Modern Physics for Scientists and Engineers
Modern Physics for Scientists and Engineers
4th Edition
ISBN: 9781133103721
Author: Stephen T. Thornton, Andrew Rex
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 4, Problem 55P
To determine

Show that the quantization of angular momentum L=nh follows Bohr’s assumption D that the mean value K  of the kinetic energy of the electron nucleus system is given by K=nhforb2 .

Blurred answer
Students have asked these similar questions
A sodium atom (Z = 11) contains 11 protons in its nucleus. Strictly speaking, the Bohr model does not apply, because the neutral atom contains 11 electrons instead of a single electron. However, we can apply the model to the outermost electron as an approximation, provided that we use an effective value Zeffective rather than 11 for the number of protons in the nucleus. (a) The ionization energy for the outermost electron in a sodium atom is 5.1 eV. Use the Bohr model with Z = Zeffective to calculate a value for Zeffective. (b) Using Z = 11, determine the corresponding value for the radius r of the outermost Bohr orbit. (c) Using the value calculated for Zeffective in part (a), determine the corresponding radius r of the outermost Bohr orbit. (a) Zeffective (b) r = (c) r= Number i Number i Number i Units Units Units
A sodium atom (Z = 11) contains 11 protons in its nucleus. Strictly speaking, the Bohr model does not apply, because the neutral atom contains 11 electrons instead of a single electron. However, we can apply the model to the outermost electron as an approximation, provided that we use an effective value Zeffective rather than 11 for the number of protons in the nucleus. (a) The ionization energy for the outermost electron in a sodium atom is 5.1 eV. Use the Bohr model with Z = Zeffective to calculate a value for Zeffective. (b) Using Z = 11, determine the corresponding value for the radius r of the outermost Bohr orbit. (c) Using the value calculated for Zeffective in part (a), determine the corresponding radius r of the outermost Bohr orbit. (a) Zeffective = Number i 2.04 (b) _r= (c)_r= Number i 5.29E-11 Number i 2.12E-11 Units No units Units m Units m ♥
A sodium atom (Z = 11) contains 11 protons in its nucleus. Strictly speaking, the Bohr model does not apply, because the neutral atom contains 11 electrons instead of a single electron. However, we can apply the model to the outermost electron as an approximation, provided that we use an effective value Zeffective rather than 11 for the number of protons in the nucleus. (a) The ionization energy for the outermost electron in a sodium atom is 5.1 eV. Use the Bohr model with Z = Zeffective to calculate a value for Zeffective. (b) Using Z = 11, determine the corresponding value for the radius r of the outermost Bohr orbit. (c) Using the value calculated for Zeffective in part (a), determine the corresponding radius r of the outermost Bohr orbit. (a) Zeffective = Number i (b)_r= (c)_r= Number i Number i Units Units Units
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax