Organic Chemistry: Principles and Mechanisms (Second Edition)
Organic Chemistry: Principles and Mechanisms (Second Edition)
2nd Edition
ISBN: 9780393663556
Author: Joel Karty
Publisher: W. W. Norton & Company
bartleby

Concept explainers

Question
Book Icon
Chapter 1, Problem 1.82P
Interpretation Introduction

(a)

Interpretation:

All resonance contributors for the given ion are to be drawn using curved arrows to indicate which pairs of electrons are being shifted.

Concept introduction:

Resonance structure exists in species for which there are two or more valid Lewis structures. Resonance structures are imaginary whereas true species which is shown by the resonance hybrid. Resonance structures have different placement of their valence electrons but not their atoms. Resonance structures with greater number of atoms having a complete octet, more covalent bonds, and fewer atoms having a non-zero formal charge are considered to be stable. Resonance structures are drawn using curved arrows. A curved arrow shows how the electron pair moves. A curved arrow originates from a lone pair of electrons or from a covalent double or triple bond to indicate the specific pair of electrons that are being moved. The arrow points to an atom if the electrons being moved become a lone pair. Otherwise, the arrow points to the center of an existing bond to represent the formation of a new double/triple bond. A resonance structure can be drawn if a lone pair of electrons on an atom is adjacent to multiple bonds, or an incomplete octet on an atom is adjacent to multiple bonds, or there is a ring of alternating single and multiple bonds.

Interpretation Introduction

(b)

Interpretation:

Resonance hybrid for the given anion is to be drawn.

Concept introduction:

For a species, each valid Lewis structure is called a ‘resonance structure’ or a ‘resonance contributor’. A resonance hybrid is a weighted average of all resonance contributors. A partial bond is represented in a resonance hybrid by a dashed line connecting the two atoms. In the resonance hybrid, partial bonds are shown which represent the atoms over which the electrons are being delocalized.

Interpretation Introduction

(c)

Interpretation:

The longest C-C bond for the given ion is to be identified.

Concept introduction:

For a species, each valid Lewis structure is called a ‘resonance structure’ or a ‘resonance contributor’. A resonance hybrid is a weighted average of all resonance contributors. A partial bond is represented in a resonance hybrid by a dashed line connecting the two atoms. In the resonance hybrid, partial bonds are shown which represent the atoms over which the electrons are being delocalized. The atoms involved in the delocalization of electrons gets a partial double bond character and thus have a shorter bond length than C-C single bond.

Blurred answer
Students have asked these similar questions
The curved arrow notation introduced in Section 1.6B is a powerful method used by organic chemists to show the movement of electrons not only in resonance structures, but also in chemical reactions.Because each curved arrow shows the movement of two electrons, following the curved arrows illustrates what bonds are broken and formed in a reaction. Consider the following three-step process. (a) Add curved arrows in Step [1] to show the movement of electrons. (b) Use the curved arrows drawn in Step [2] to identify the structure of X. X is converted in Step [3] to phenol and HCl.
The curved arrow notation introduced in Section 1.6B is a powerfulmethod used by organic chemists to show the movement of electronsnot only in resonance structures, but also in chemical reactions.Because each curved arrow shows the movement of two electrons,following the curved arrows illustrates what bonds are broken andformed in a reaction. Consider the following three-step process. (a) Addcurved arrows in Step [1] to show the movement of electrons. (b) Use thecurved arrows drawn in Step [2] to identify the structure of X. X isconverted in Step [3] to phenol and HCl.
The curved arrow notation introduced in Section 1.6 is a powerful method used by organic chemists to show the movement of electrons not only in resonance structures, but also in chemical reactions. Since each curved arrow shows the movement of two electrons, following the curved arrows illustrates what bonds are broken and formed in a reaction. Consider the following three-step process. (a) Add curved arrows in Step [1] to show the movement of electrons. (b) Use the curved arrows drawn in Step [2] to identify the structure of X. X is converted in Step [3] to phenol and HCl.

Chapter 1 Solutions

Organic Chemistry: Principles and Mechanisms (Second Edition)

Ch. 1 - Prob. 1.11PCh. 1 - Prob. 1.12PCh. 1 - Prob. 1.13PCh. 1 - Prob. 1.14PCh. 1 - Prob. 1.15PCh. 1 - Prob. 1.16PCh. 1 - Prob. 1.17PCh. 1 - Prob. 1.18PCh. 1 - Prob. 1.19PCh. 1 - Prob. 1.20PCh. 1 - Prob. 1.21PCh. 1 - Prob. 1.22PCh. 1 - Prob. 1.23PCh. 1 - Prob. 1.24PCh. 1 - Prob. 1.25PCh. 1 - Prob. 1.26PCh. 1 - Prob. 1.27PCh. 1 - Prob. 1.28PCh. 1 - Prob. 1.29PCh. 1 - Prob. 1.30PCh. 1 - Prob. 1.31PCh. 1 - Prob. 1.32PCh. 1 - Prob. 1.33PCh. 1 - Prob. 1.34PCh. 1 - Prob. 1.35PCh. 1 - Prob. 1.36PCh. 1 - Prob. 1.37PCh. 1 - Prob. 1.38PCh. 1 - Prob. 1.39PCh. 1 - Prob. 1.40PCh. 1 - Prob. 1.41PCh. 1 - Prob. 1.42PCh. 1 - Prob. 1.43PCh. 1 - Prob. 1.44PCh. 1 - Prob. 1.45PCh. 1 - Prob. 1.46PCh. 1 - Prob. 1.47PCh. 1 - Prob. 1.48PCh. 1 - Prob. 1.49PCh. 1 - Prob. 1.50PCh. 1 - Prob. 1.51PCh. 1 - Prob. 1.52PCh. 1 - Prob. 1.53PCh. 1 - Prob. 1.54PCh. 1 - Prob. 1.55PCh. 1 - Prob. 1.56PCh. 1 - Prob. 1.57PCh. 1 - Prob. 1.58PCh. 1 - Prob. 1.59PCh. 1 - Prob. 1.60PCh. 1 - Prob. 1.61PCh. 1 - Prob. 1.62PCh. 1 - Prob. 1.63PCh. 1 - Prob. 1.64PCh. 1 - Prob. 1.65PCh. 1 - Prob. 1.66PCh. 1 - Prob. 1.67PCh. 1 - Prob. 1.68PCh. 1 - Prob. 1.69PCh. 1 - Prob. 1.70PCh. 1 - Prob. 1.71PCh. 1 - Prob. 1.72PCh. 1 - Prob. 1.73PCh. 1 - Prob. 1.74PCh. 1 - Prob. 1.75PCh. 1 - Prob. 1.76PCh. 1 - Prob. 1.77PCh. 1 - Prob. 1.78PCh. 1 - Prob. 1.79PCh. 1 - Prob. 1.80PCh. 1 - Prob. 1.81PCh. 1 - Prob. 1.82PCh. 1 - Prob. 1.1YTCh. 1 - Prob. 1.2YTCh. 1 - Prob. 1.3YTCh. 1 - Prob. 1.4YTCh. 1 - Prob. 1.5YTCh. 1 - Prob. 1.6YTCh. 1 - Prob. 1.7YTCh. 1 - Prob. 1.8YTCh. 1 - Prob. 1.9YTCh. 1 - Prob. 1.10YTCh. 1 - Prob. 1.11YTCh. 1 - Prob. 1.12YTCh. 1 - Prob. 1.13YTCh. 1 - Prob. 1.14YTCh. 1 - Prob. 1.15YTCh. 1 - Prob. 1.16YTCh. 1 - Prob. 1.17YT
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY