Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
Question
Book Icon
Chapter 3.6, Problem 3.30P
To determine

The transformation from position space to energy space wave function for a discrete spectrum with time independent potential.

Blurred answer
Students have asked these similar questions
A particle with mass m is moving along the x-axis in a potential given by the potential energy function U(x) = 0.5mw²x². Compute the product (x, t)*U (x) V (x, t). Express your answer in terms of the time-independent wave function, (x).
Consider the particle in the infinite potential well as shown in Figure P2.29. Derive and sketch the wave functions corresponding to the four lowest energy levels. (Do not normalize the wave functions.)
Consider the "step" potential: V(x) = (a) Calculate the reflection coefficient, for the case E 0. (b) Calculate the reflection coefficient for the case E > Vo. (c) For a potential such as this, which does not go back to zero to the right of the barrier, the transmission coefficient is not simply |F12/A2 (with A the -Vo AV(x) Scattering from a "cliff" incident amplitude and F the transmitted amplitude), because the transmitted wave travels at a different speed. Show that T = E-Vo F1² E |A|² X for E> Vo. Hint: You can figure it out using Equation gantly, but less informatively-from the probability current ( What is T, for E Vo, calculate the transmission coefficient for the step potential, and check that T + R = 1.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning