Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
Question
Book Icon
Chapter 3, Problem 3.38P
To determine

The proof for energy time uncertainty principle.

Blurred answer
Students have asked these similar questions
∆E ∆t ≥ ħTime is a parameter, not an observable. ∆t is some timescale over which the expectation value of an operator changes. For example, an electron's angular momentum in a hydrogen atom decays from 2p to 1s. These decays are relativistic, however the uncertainty principle is still valid, and we can use it to estimate uncertainties. ∆E doesn't change in time, so when an excited state decays to the ground state (infinite lifetime, so no energy uncertainty), the energy uncertainty has to go somewhere. Usually, it’s in the frequency of a photon giving a width (through E = hν) to the transition line in an spectroscopy experiment. The linewidth of the 2p state in 9Be+ is 19.4 MHz. What is its lifetime? (Note: in the relativistic atom–photon system, the Hamiltonian is independent of time and both energy and its uncertainty are conserved.)
∆E ∆t ≥ ħTime is a parameter, not an observable. ∆t is some timescale over which the expectation value of an operator changes. For example, an electron's angular momentum in a hydrogen atom decays from 2p to 1s. These decays are relativistic, however the uncertainty principle is still valid, and we can use it to estimate uncertainties. The lifetime of hydrogen in the 2p state to decay to the Is ground state is 1.6 x 10-9 s. Estimate the uncertainty ∆E in energy of this excited state. What is the corresponding linewidth in angstroms?
A particle with zero (total) energy is described by the wavefunction,   Ψ(x) =A cos((n?x/L)): −L/4≤ x ≤ L/4         = 0 : elsewhere. Determine the normalization constant A. Calculate the potential energy of the particle. What is the probability that the particle will be found between x= 0 and x=L/8?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning