Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
Question
Book Icon
Chapter 3.5, Problem 3.19P

(a)

To determine

To show that x moves at constant velocity.

(b)

To determine

To prove any normalized wave packet denoting a particle in harmonic oscillator potential oscillates at classical frequency.

Blurred answer
Students have asked these similar questions
Problem 2.15 In the ground state of the harmonic oscillator, what is the probability (correct to three significant digits) of finding the particle outside the classically allowed region? Hint: Classically, the energy of an oscillator is E = (1/2)ka² = (1/2)mw²a², where a is the amplitude. So the "classically allowed region" for an oscillator of energy E extends from -√2E/mw² to +√2E/mw². Look in a math table under "Normal Distribution" or "Error Function" for the numerical value of the integral.
Problem 1.17 A particle is represented (at time=0) by the wave function A(a²-x²). if-a ≤ x ≤+a. 0, otherwise. 4(x, 0) = { (a) Determine the normalization constant A. (b) What is the expectation value of x (at time t = 0)? (c) What is the expectation value of p (at time t = 0)? (Note that you cannot get it from p = md(x)/dt. Why not?) (d) Find the expectation value of x². (e) Find the expectation value of p².
Problem 2.21 Suppose a free particle, which is initially localized in the range -a < x < a, is released at time t = 0: А, if -a < х <а, otherwise, (x, 0) = where A and a are positive real constants. 50 Chap. 2 The Time-Independent Schrödinger Equation (a) Determine A, by normalizing V. (b) Determine (k) (Equation 2.86). (c) Comment on the behavior of (k) for very small and very large values of a. How does this relate to the uncertainty principle? *Problem 2.22 A free particle has the initial wave function (x, 0) = Ae ax where A and a are constants (a is real and positive). (a) Normalize (x, 0). (b) Find V(x, t). Hint: Integrals of the form e-(ax?+bx) dx can be handled by "completing the square." Let y = Ja[x+(b/2a)], and note that (ax? + bx) = y? – (b²/4a). Answer: 1/4 e-ax?/[1+(2ihat/m)] 2a Y (x, t) = VI+ (2iħat/m) (c) Find |4(x, t)2. Express your answer in terms of the quantity w Va/[1+ (2hat/m)²]. Sketch |V|? (as a function of x) at t = 0, and again for some very large t.…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON