Modern Physics for Scientists and Engineers
Modern Physics for Scientists and Engineers
4th Edition
ISBN: 9781133103721
Author: Stephen T. Thornton, Andrew Rex
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 22P
To determine

The wavelength for which the spectral distribution calculated by Planck and Rayleigh-Jeans results differ by 5%.

Blurred answer
Students have asked these similar questions
For a temperature of 5800 K (the sun's surface temperature), find the wavelength for which the spectral distribution calculated by the Planck and Rayleigh-Jeans results differ by 5%. Hint: To match the required condition consider: IR-J = 1.05 I
For the thermal radiation from an ideal blackbody radiator with a surface temperature of 2000 K, let Ic represent the intensity per unit wavelength according to the classical expression for the spectral radiancy and IP represent the corresponding intensity per unit wavelength according to the Planck expression.What is the ratio Ic/IP for a wavelength of (a) 400 nm (at the blue end of the visible spectrum) and (b) 200 mm (in the far infrared)? (c) Does the classical expression agree with the Planck expression in the shorter wavelength range or the longer wavelength range?
A blackbody is an object with a radiation spectrum that is dependent solely on its tempera- ture. A blackbody spectrum (or spectral radiancy curve) is described by the Planck Radiation Law. (a) i. Sketch the spectral radiancy curves for blackbodies with temperatures of T = 4000 K and T = 6000 K, respectively. Describe the main differences between the two curves in terms of the appropriate physical laws defined as a function of tempera- ture. ii. What is the wavelength at peak intensity for each blackbody? State the part of the electromagnetic spectrum to which each wavelength belongs. (b) Use the Planck Radiation Law to determine the power radiated per unit area between the wavelengths A 500 nanometres and λ = 503 nanometres for the T 6000 K blackbody. What fraction of the blackbody's radiancy lies in this wavelength range? =

Chapter 3 Solutions

Modern Physics for Scientists and Engineers

Ch. 3 - Prob. 11QCh. 3 - Prob. 12QCh. 3 - Prob. 13QCh. 3 - Prob. 14QCh. 3 - Prob. 15QCh. 3 - Prob. 16QCh. 3 - Prob. 17QCh. 3 - Prob. 18QCh. 3 - Prob. 19QCh. 3 - Prob. 20QCh. 3 - Prob. 21QCh. 3 - Prob. 22QCh. 3 - Prob. 23QCh. 3 - Prob. 24QCh. 3 - Prob. 25QCh. 3 - Prob. 26QCh. 3 - Prob. 1PCh. 3 - Prob. 2PCh. 3 - Across what potential difference does an electron...Ch. 3 - Prob. 4PCh. 3 - Prob. 5PCh. 3 - Prob. 6PCh. 3 - Prob. 7PCh. 3 - Prob. 8PCh. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - Prob. 16PCh. 3 - Calculate max for blackbody radiation for (a)...Ch. 3 - Prob. 18PCh. 3 - Prob. 19PCh. 3 - Prob. 20PCh. 3 - White dwarf stars have been observed with a...Ch. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - Prob. 44PCh. 3 - Prob. 45PCh. 3 - Prob. 46PCh. 3 - Prob. 47PCh. 3 - Prob. 48PCh. 3 - Prob. 49PCh. 3 - Prob. 50PCh. 3 - Prob. 52PCh. 3 - Prob. 53PCh. 3 - Prob. 54PCh. 3 - Prob. 55PCh. 3 - Prob. 56PCh. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - Prob. 62PCh. 3 - Prob. 63PCh. 3 - Prob. 64PCh. 3 - Prob. 65PCh. 3 - Prob. 66PCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - The Fermi Gamma-ray Space Telescope, launched in...Ch. 3 - Prob. 70P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Modern Physics
    Physics
    ISBN:9781111794378
    Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
    Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning