Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 4.36P

The elemental unit of an air heater consists of a long circular rod of diameter D, which is encapsulated by a finned sleeve and in which thermal energy is generated by ohmic heating. The N fins of thickness t and length L are integrally fabricated with the square sleeve of width w. Under steady-state operating conditions, the rate of thermal energy generation corresponds to the rate of heat transfer to airflow over the sleeve.

Chapter 4, Problem 4.36P, The elemental unit of an air heater consists of a long circular rod of diameter D, which is

  1. Under conditions for which a uniform surface temperature T s is maintained around thecircumference of the heater and the temperature T and convection coefficient h of the airflow areknown, obtain an expression for the rate of heat transfer per unit length to the air. Evaluate the heat rate for T s = 300 ° C, D = 20 mm, an aluminum sleeve ( k s = 240 W/m K ) , w = 40 mm, N = 16 , t = 4 mm, L = 20 mm , T = 50 ° C, and h = 500 W/m 2 K .
  2. For the foregoing heat rate and a copper heater of thermal conductivity k h = 400 W/m K, what is the required volumetric heat generation within the heater and its corresponding centerline temperature?
  3. With all other quantities unchanged, explore the effect of variations in the tin parameters ( N , L , t ) on the heat rate, subject to the constraint that the tin thickness and the spacing between fins cannot be less than 2 mm.

Blurred answer
Students have asked these similar questions
As part of your work-study program at HTU, you successfully got a student job at your local ‘BEST-BURGER-IN-TOWN’ to help pay your own tuition and expenses. Since cylindrical frozen burger patties are cooked when placed on a hot stainless-steel cooking top, you like to think of the case as a conduction problem:a. Write down the appropriate general heat conduction equation that describes the cooking of those beef patties.b. Clearly state all assumptions.c. After cancelling the proper terms, write down the final energy equation for the patties.Do not solve for temperature distribution or heat transfer.
The steady-state temperature distribution in a one-dimensional wall of thermal conductivity 50 W/m -K and thickness 50 mm is observed to be T(°C) = a + bx, where a = 200 °C, b=-2000 °C/m², and x is in meters. i. ii. What is the heat generation rate in the wall? (8) Determine the heat fluxes at the two wall faces. In what manner are these heat fluxes related to the heat generation rate? (
Given: Plate thickness: 30 mm k = 45 W/m°C Uniform volumetric heat generation: q = 25 MW/m³ Temperature on the right surface: 450K Temperature on the left surface: 390K Determine the following: (i) The equation for t(x). (ii) The maximum temperature and its location. (iii) The heat flow from each surface of the plate.

Chapter 4 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 4 - Determine the heat transfer rate between two...Ch. 4 - A two-dimensional object is subjected to...Ch. 4 - An electrical heater 100 mm long and 5 mm in...Ch. 4 - Two parallel pipelines spaced 0.5 m apart are...Ch. 4 - A small water droplet of diameter D=100m and...Ch. 4 - A tube of diameter 50 mm having a surface...Ch. 4 - Pressurized steam at 450K flows through a long,...Ch. 4 - The temperature distribution in laser-irradiated...Ch. 4 - Hot water at 85°C flows through a thin-walled...Ch. 4 - A furnace of cubical shape, with external...Ch. 4 - Laser beams are used to thermally process...Ch. 4 - A double-glazed window consists of two sheets of...Ch. 4 - A pipeline, used for the transport of crude oil,...Ch. 4 - A long power transmission cable is buried at a...Ch. 4 - A small device is used to measure the surface...Ch. 4 - A cubical glass melting furnace has exterior...Ch. 4 - An aluminum heat sink (k=240W/mK), used to cool an...Ch. 4 - Hot water is transported from a cogeneration power...Ch. 4 - A long constantan wire of 1-mm diameter is butt...Ch. 4 - A hole of diameter D=0.25m is drilled through the...Ch. 4 - In Chapter 3 we that, whenever fins are attached...Ch. 4 - An igloo is built in the shape of a hemisphere,...Ch. 4 - Prob. 4.34PCh. 4 - An electronic device, in the form of a disk 20 mm...Ch. 4 - The elemental unit of an air heater consists of a...Ch. 4 - Prob. 4.37PCh. 4 - Prob. 4.38PCh. 4 - Prob. 4.39PCh. 4 - Prob. 4.40PCh. 4 - One of the strengths of numerical methods is their...Ch. 4 - Determine expressionsfor...Ch. 4 - Consider heat transfer in a one-dimensional...Ch. 4 - In a two-dimensional cylindrical configuration,...Ch. 4 - Upper and lower surfaces of a bus bar are...Ch. 4 - Derive the nodal finite-difference equations for...Ch. 4 - Consider the nodal point 0 located on the boundary...Ch. 4 - Prob. 4.48PCh. 4 - Prob. 4.49PCh. 4 - Consider the network for a two-dimensional system...Ch. 4 - An ancient myth describes how a wooden ship was...Ch. 4 - Consider the square channel shown in the sketch...Ch. 4 - A long conducting rod of rectangular cross section...Ch. 4 - A flue passing hot exhaust gases has a square...Ch. 4 - Steady-state temperatures (K) at three nodal...Ch. 4 - Functionally graded materials are intentionally...Ch. 4 - Steady-state temperatures at selected nodal points...Ch. 4 - Consider an aluminum heat sink (k=240W/mK), such...Ch. 4 - Conduction within relatively complex geometries...Ch. 4 - Prob. 4.60PCh. 4 - The steady-state temperatures (°C) associated with...Ch. 4 - A steady-state, finite-difference analysis has...Ch. 4 - Prob. 4.63PCh. 4 - Prob. 4.64PCh. 4 - Consider a two-dimensional. straight triangular...Ch. 4 - A common arrangement for heating a large surface...Ch. 4 - A long, solid cylinder of diameter D=25mm is...Ch. 4 - Consider Problem 4.69. An engineer desires to...Ch. 4 - Prob. 4.71PCh. 4 - Prob. 4.72PCh. 4 - Prob. 4.73PCh. 4 - Refer to the two-dimensional rectangular plate of...Ch. 4 - The shape factor for conduction through the edge...Ch. 4 - Prob. 4.77PCh. 4 - A simplified representation for cooling in very...Ch. 4 - Prob. 4.84PCh. 4 - A long trapezoidal bar is subjected to uniform...Ch. 4 - Consider the system of Problem 4.54. The interior...Ch. 4 - A long furnace. constructed from refractory brick...Ch. 4 - A hot pipe is embedded eccentrically as shown in a...Ch. 4 - A hot liquid flows along a V-groove in a solid...Ch. 4 - Prob. 4S.5PCh. 4 - Hollow prismatic bars fabricated from plain carbon...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license