Modern Physics
Modern Physics
2nd Edition
ISBN: 9780805303087
Author: Randy Harris
Publisher: Addison Wesley
Question
Book Icon
Chapter 5, Problem 97CE

(a)

To determine

The region to which a classical particle would be restricted.

(b)

To determine

The expression of probability in integral form.

Blurred answer
Students have asked these similar questions
An electron with kinetic energy E = 3.10 eV is incident on a barrier of width L = 0.230 nm and height U = 10.0 eV (a) What is the probability that the electron tunnels through the barrier? (Use 9.11  10-31 kg for the mass of an electron, 1.055 ✕ 10−34 J · s for ℏ, and note that there are 1.60 ✕ 10−19 J per eV.)   b) What is the probability that the electron is reflected?   What If? For what value of U (in eV) would the probability of transmission be exactly 25.0% and 50.0%?   c) 25.0%   d) 50.0%
Problem 1: (a) A non-relativistic, free particle of mass m is bouncing back and forth between two perfectly reflecting walls separated by a distance L. Imagine that the two oppositely directed matter waves associated with this particle interfere to create a standing wave with a node at each of the walls. Find the kinetic energies of the ground state (first harmonic, n = 1) and first excited state (second harmonic, n = 2). Find the formula for the kinetic energy of the n-th harmonic. (b) If an electron and a proton have the same non-relativistic kinetic energy, which particle has the larger de Broglie wavelength? (c) Find the de Broglie wavelength of an electron that is accelerated from rest through a small potential difference V. (d) If a free electron has a de Broglie wavelength equal to the diameter of Bohr's model of the hydrogen atom (twice the Bohr radius), how does its kinetic energy compare to the ground-state energy of an electron bound to a Bohr model hydrogen atom?
= = An electron having total energy E 4.60 eV approaches a rectangular energy barrier with U■5.10 eV and L-950 pm as shown in the figure below. Classically, the electron cannot pass through the barrier because E < U. Quantum-mechanically, however, the probability of tunneling is not zero. Energy E U 0 i (a) Calculate this probability, which is the transmission coefficient. (Use 9.11 x 10-31 kg for the mass of an electron, 1.055 x 10-34] s for h, and note that there are 1.60 x 10-19 J per eV.) (b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.60-eV electron tunneling through the barrier to be one in one million? nm

Chapter 5 Solutions

Modern Physics

Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - Prob. 13CQCh. 5 - Prob. 14CQCh. 5 - Prob. 15CQCh. 5 - Prob. 16CQCh. 5 - Prob. 17CQCh. 5 - Prob. 18CQCh. 5 - Prob. 19ECh. 5 - Prob. 20ECh. 5 - Prob. 21ECh. 5 - Prob. 22ECh. 5 - Prob. 23ECh. 5 - Prob. 24ECh. 5 - Prob. 25ECh. 5 - Prob. 26ECh. 5 - Prob. 27ECh. 5 - Prob. 28ECh. 5 - Prob. 29ECh. 5 - Prob. 30ECh. 5 - Prob. 31ECh. 5 - Prob. 32ECh. 5 - Prob. 33ECh. 5 - Prob. 34ECh. 5 - Prob. 35ECh. 5 - Prob. 36ECh. 5 - Prob. 37ECh. 5 - Prob. 38ECh. 5 - Prob. 39ECh. 5 - Prob. 40ECh. 5 - Prob. 41ECh. 5 - Prob. 42ECh. 5 - Obtain expression (5-23) from equation (5-22)....Ch. 5 - Prob. 44ECh. 5 - Prob. 45ECh. 5 - Prob. 46ECh. 5 - Prob. 47ECh. 5 - Prob. 48ECh. 5 - Prob. 49ECh. 5 - Prob. 50ECh. 5 - Prob. 51ECh. 5 - Prob. 52ECh. 5 - Prob. 53ECh. 5 - Prob. 54ECh. 5 - Prob. 55ECh. 5 - Prob. 56ECh. 5 - Prob. 57ECh. 5 - Prob. 58ECh. 5 - Prob. 59ECh. 5 - Prob. 60ECh. 5 - Prob. 61ECh. 5 - Prob. 62ECh. 5 - Prob. 63ECh. 5 - Prob. 64ECh. 5 - Prob. 65ECh. 5 - Prob. 66ECh. 5 - Prob. 67ECh. 5 - Prob. 68ECh. 5 - Prob. 69ECh. 5 - Prob. 70ECh. 5 - Prob. 71ECh. 5 - In a study of heat transfer, we find that for a...Ch. 5 - Prob. 73CECh. 5 - Prob. 74CECh. 5 - Prob. 75CECh. 5 - Prob. 76CECh. 5 - Prob. 77CECh. 5 - Prob. 78CECh. 5 - Prob. 79CECh. 5 - Prob. 80CECh. 5 - Prob. 81CECh. 5 - Prob. 82CECh. 5 - Prob. 83CECh. 5 - Prob. 84CECh. 5 - Prob. 85CECh. 5 - Prob. 86CECh. 5 - Prob. 87CECh. 5 - Prob. 88CECh. 5 - Consider the differential equation...Ch. 5 - Prob. 90CECh. 5 - Prob. 91CECh. 5 - Prob. 92CECh. 5 - Prob. 93CECh. 5 - Prob. 94CECh. 5 - Prob. 95CECh. 5 - Prob. 96CECh. 5 - Prob. 97CECh. 5 - Prob. 98CE
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning