Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
Question
Book Icon
Chapter 4.4, Problem 4.36P

(a)

To determine

The Hamiltonian matrix for an electron at rest in an oscillating magnetic field.

(b)

To determine

The eigen vector χ(t) at any subsequent time.

(c)

To determine

The probability of getting /2.

(d)

To determine

The minimum field B0 required to force a complete flip in Sx

Blurred answer
Students have asked these similar questions
The Hamiltonian of a spin in a constant magnetic field B aligned with the y axis is given by H = aSy, where a is a constant. a) Use the energies and eigenstates for this case to determine the time evolution psi(t) of the state with initial condition psi(0) = (1/root(2))*matrix(1,1). (Vertical matrix, 2x1!) b) For your solution from part (a), calculate the expectation values <Sx>, <Sy>, <Sz> as a function of time. I have attached the image of the orginial question!
Prove the following commutator identity: [AB, C] = A[B. C]+[A. C]B.
Spin/Field Hamiltonian Consider a spin-1/2 particle with a magnetic moment µ = -e/m$ placed in a uniform magnetic field aligned along the z axis. (a) Write the Hamiltonian for this system in matrix form. (b) Verify by explicit matrix calculation that the Hamiltonian does not commute with the spin operators in the r and y directions. Comment on how this affects the expectation values of these operators.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning