General Physics, 2nd Edition
General Physics, 2nd Edition
2nd Edition
ISBN: 9780471522782
Author: Morton M. Sternheim
Publisher: WILEY
bartleby

Videos

Question
Book Icon
Chapter 18, Problem 24E
To determine

The value of time constant.

Blurred answer
Students have asked these similar questions
Assume the length of an axon membrane of about 0.10 cm is excited by an action potential (length excited = nerve speed ✕ pulse duration = 50 m/s ✕ 2.0 ms = 10 cm). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = ??oA/d and Q = CΔV to investigate the charge as follows. Use typical values for a cylindrical axon of cell thickness d = 1.6 ✕ 10−8 m, axon radius r = 1.2 ✕ 101 ?m, and cell-wall dielectric constant ? = 2.3. A diagram shows a collection of positive and negative charges in and around an axon. The diagram is divided into three sections, one on top of the other. The top section is labeled "External fluid". A row of positive charges labeled "Positive charge layer" lies along the bottom side of this section. Above the row of positive charges, there is an even mixture of…
Calculate the axoplasm resistance for a neuron of length 0.06 m and a radius of 5 um. The axoplasm resistivity is 2.0 Ohm.m. Give your answer in MOhms
Assume a length of axon membrane of about 0.10 m is excited by an action potential length excited = nerve speed × pulse duration = 50.0 m/s × 0.0020 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with k* ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in the figure below. Model the axon as a parallel-plate capacitor and take C = ke,A/d and Q = CAV to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 1.4 x 10-8 m, axon radius r = 1.4 x 101 um, and cell-wall dielectric constant k = 2.2.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    College Physics
    Physics
    ISBN:9781305952300
    Author:Raymond A. Serway, Chris Vuille
    Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY