During the last rotation, a hammer thrower maintains a constant acceleration of his hammer, from 28 m/s at the beginning of the rotation to 32 m/s at the time of release. a) If the radius of the hammer's rotations is 1.3 m, what is the total linear acceleration when the hammer has covered 3/4 of the last rotation? Steps: 1) Find the tangential acceleration of the hammer: m/s2 2) Find the tangential velocity after 3/4 of the final rotation: m/s. (Note, this is NOT just 3/4 of the way from 28 to 32 , because you travel further in a given time at higher speed.) 3) Find the radial acceleration of the hammer after 3/4 of the final rotation: m/s2. 4) Find the total acceleration after 3/4 of the final rotation: m/s2. b) How far will the throw go, if the initial launch angle is 41 degrees above the horizontal, 1.9 m above the ground.   Steps: 1) Find the time-of-flight: s 2) Find the horizontal velocity: m/s 3) Find the horizontal distance: m.

Glencoe Physics: Principles and Problems, Student Edition
1st Edition
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Paul W. Zitzewitz
Chapter8: Rotational Motion
Section: Chapter Questions
Problem 103A
icon
Related questions
Question

During the last rotation, a hammer thrower maintains a constant acceleration of his hammer, from 28 m/s at the beginning of the rotation to 32 m/s at the time of release. a) If the radius of the hammer's rotations is 1.3 m, what is the total linear acceleration when the hammer has covered 3/4 of the last rotation?

Steps:

1) Find the tangential acceleration of the hammer: m/s2

2) Find the tangential velocity after 3/4 of the final rotation: m/s. (Note, this is NOT just 3/4 of the way from 28 to 32 , because you travel further in a given time at higher speed.)

3) Find the radial acceleration of the hammer after 3/4 of the final rotation: m/s2.

4) Find the total acceleration after 3/4 of the final rotation: m/s2.

b) How far will the throw go, if the initial launch angle is 41 degrees above the horizontal, 1.9 m above the ground.

 

Steps:

1) Find the time-of-flight: s

2) Find the horizontal velocity: m/s

3) Find the horizontal distance: m.

Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning