Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
Question
Book Icon
Chapter 5.3, Problem 5.24P

(a)

To determine

Show that the wave function for a particle in the periodic delta function potential can be written in the form ψ(x)=C{sin(kx)+eiqasin[k(ax)]},(0xa).

(b)

To determine

The correct wave function for the case at the top of a band yields ψ(x)=0/0.

Blurred answer
Students have asked these similar questions
A O, molecule oscillates with a frequency of 4.7 x1013 Hz. (a) What is the difference in energy in ev between allowed oscillator states? ev (b) what is the approximate value of n for a state having an energy of 1.4 eV? (Give your answer to the nearest integer.)
Start by defining 1(1) = N1 sin(7r/a) (1) b2(x) = N2 sin(2ñr/a) (2) for the infinite square well. Fix N1 and N2 so that %3D 2) You should find that p(r) is periodic in time. That is p(x, t + T) = p(x,t). Find that T, and draw p(x) for at t = 0, t = T/4, t = T/2, and T = 3T/4.
A quantum mechanical particle is confined to a one-dimensional infinite potential well described by the function V(x) = 0 in the region 0 < x < L, V(x) = ∞ elsewhere. The normalised eigenfunctions for a particle moving in this potential are: Yn(x) = √ 2 Nπ sin -X L L where n = 1, 2, 3, .. a) Write down the expression for the corresponding probability density function. Sketch the shape of this function for a particle in the ground state (n = 1). b) Annotate your sketch to show the probability density function for a classical particle moving at constant speed in the well. Give a short justification for the shape of your sketch. c) Briefly describe, with the aid of a sketch or otherwise, the way in which the quantum and the classical probability density functions are consistent with the correspondence principle for large values of n.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON