Introduction To Health Physics
Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
bartleby

Concept explainers

Question
Book Icon
Chapter 3, Problem 3.16P
To determine

The photon emission rate, per second from the mercury-vapor ultraviolet lamp of 25 watts with a 0.1% electrical energy input appearing as a UV radiation of wavelength 2537 angstroms.

Blurred answer
Students have asked these similar questions
The energy of a photon is 52.6 eV. What is the wavelength in of the photon? Assume 3 sig figs. 1nm = 10-⁹ m nanometers
Suppose a star with radius 8.69 x 10° m has a peak wavelength of 684 nm in the spectrum of its emitted radiation. (a) Find the energy of a photon with this wavelength. 0.029e-17 J/photon (b) What is the surface temperature of the star? 4274.3 X K (c) At what rate is energy emitted from the star in the form of radiation? Assume the star is a blackbody (e = 1). 1.9934e17 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. W (d) Using the answer to part (a), estimate the rate at which photons leave the surface of the star. X photons/s
An infrared photon has a frequency of 8.3 E12 Hz. What is the energy of this photon, expressed in meV (milli electron-volt)? I tried the formula E=hf => E= (6.63E-34)(8.3E12) = 5.5029E-21 and then converted to meV as 3.43E22, but it's still wrong.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax