Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
Question
Book Icon
Chapter 2, Problem 2.50P

(a)

To determine

To show that the time-dependent Schrodinger equation admits the exact solution Ψ(x,t)=mαemα|xvt|/2ei[(E+(1/2)mv2)tmvx]/

(b)

To determine

The expectation value of the Hamiltonian of the given state.

Blurred answer
Students have asked these similar questions
The normalization condition for a wavefunction Ψ(x, t) is given by � ∞ −∞ Ψ∗(x, t)Ψ(x, t)dx = 1. This necessarily means that the LHS has to be independent of time. Show that this is indeed the case
Consider the Schrodinger equation for a one-dimensional linear harmonic oscillator: -(hbar2/2m) * d2ψ/dx2 + (kx2/2)*ψ(x) = Eψ(x) Substitute the wavefunction ψ(x) = e-(x^2)/(ξ^2) and find ξ and E required to satisfy the Schrodinger equation. [Hint: First calculate the second derivative of ψ(x), then substitute ψ(x) and ψ′′(x). After this substitution, there will be an overall factor of e-(x^2)/(ξ^2) on both sides of the equation which canbe an canceled out. Then, gather all terms which depend on x into one coefficient multiplying x2. This coefficient must be zero because the equation must be satisfied for any x, and equating it with zero yields the expression for ξ. Finally, the remaining x-independent part of the equation determines the eigenvalue for energy E associated with this solution.]
A particle with mass m is moving in three-dimensions under the potential energy U(r), where r is the radial distance from the origin. The state of the particle is given by the time-independent wavefunction, Y(r) = Ce-kr. Because it is in three dimensions, it is the solution of the following time-independent Schrodinger equation dıp r2 + U(r)µ(r). dr h2 d EÞ(r) = 2mr2 dr In addition, 00 1 = | 4ar?y? (r)dr, (A(r)) = | 4r²p²(r)A(r)dr. a. Using the fact that the particle has to be somewhere in space, determine C. Express your answer in terms of k. b. Remembering that E is a constant, and the fact that p(r) must satisfy the time-independent wave equation, what is the energy E of the particle and the potential energy U(r). (As usual, E and U(r) will be determined up to a constant.) Express your answer in terms of m, k, and ħ.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning