Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
5th Edition
ISBN: 9780534408961
Author: Stephen T. Thornton, Jerry B. Marion
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.24P

A skier weighing 90 kg starts from rest down a hill inclined at 17°. He skis 100 m down the hill and then coasts for 70 m along level snow until he stops. Find the coefficient of kinetic friction between the skis and the snow. What velocity does the skier have at the bottom of the hill?

Blurred answer
Students have asked these similar questions
A penguin slides at a constant velocity of 1.4 m/s down an icy incline. The incline slopes above the horizontal at an angle of 6.9?degrees. At the bottom of the incline, the penguin slides onto a horizontal patch of ice. The coefficient of kinetic friction between the penguin and the ice is the same for the incline as for the horizontal slope. How much time is required for the penguin to slide to a halt after entering the horizontal patch of ice?
The brakes on a big truck fail and it is forced to use a runaway truck lane. The lane is perfectly horizontal, and full of deep gravel, creating a coefficient of kinetic friction between the truck and the gravel of 0.80. The truck enters the lane at moving 35 m/s (about 80 mph). How far does the truck travel before it stops?
A skier slides down a hill in a straight line. The hill is 60m high and the coefficient of kinetic friction between the snow and the skis is 0.1. The hill is at an angle of 10 degrees with the horizontal. The mass of the skier is 70 kg. If the skier starts her run from rest and air friction can be ignored, how fast is she moving at the bottom of the hill? Please answer in units of m/s.

Chapter 2 Solutions

Classical Dynamics of Particles and Systems

Ch. 2 - A particle is projected vertically upward in a...Ch. 2 - A particle moves in a medium under the influence...Ch. 2 - A projectile is fired with initial speed 0 at an...Ch. 2 - A particle of mass m slides down an inclined...Ch. 2 - A particle is projected with an initial velocity 0...Ch. 2 - A strong softball player smacks the ball at a...Ch. 2 - Prob. 2.19PCh. 2 - A gun fires a projectile of mass 10 kg of the type...Ch. 2 - Prob. 2.21PCh. 2 - Prob. 2.22PCh. 2 - A skier weighing 90 kg starts from rest down a...Ch. 2 - A block of mass m = 1.62 kg slides down a...Ch. 2 - A child slides a block of mass 2 kg along a slick...Ch. 2 - A rope having a total mass of 0.4 kg and total...Ch. 2 - A superball of mass M and a marble of mass m are...Ch. 2 - An automobile driver traveling down an 8% grade...Ch. 2 - A student drops a water-filled balloon from the...Ch. 2 - Prob. 2.31PCh. 2 - Two blocks of unequal mass are connected by a...Ch. 2 - A particle is released from rest (y = 0) and falls...Ch. 2 - Perform the numerical calculations of Example 2.7...Ch. 2 - Prob. 2.36PCh. 2 - A particle of mass m has speed υ = α/x, where x is...Ch. 2 - The speed of a particle of mass m varies with the...Ch. 2 - A boat with initial speed υ0 is launched on a...Ch. 2 - A train moves along the tracks at a constant speed...Ch. 2 - Prob. 2.42PCh. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - Consider a particle moving in the region x > 0...Ch. 2 - Prob. 2.48PCh. 2 - Prob. 2.49PCh. 2 - According to special relativity, a particle of...Ch. 2 - Let us make the (unrealistic) assumption that a...Ch. 2 - A particle of mass m moving in one dimension has...Ch. 2 - A potato of mass 0.5 kg moves under Earth’s...Ch. 2 - Prob. 2.55P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Conservative and Non Conservative Forces; Author: AK LECTURES;https://www.youtube.com/watch?v=vFVCluvSrFc;License: Standard YouTube License, CC-BY