Power System Analysis and Design (MindTap Course List)
Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 9, Problem 9.2P
To determine

The Thevenin equivalent for each sequence network as viewed from the fault bus.

Blurred answer
Students have asked these similar questions
Q2. The single-line diagram of a simple three-bus power system is shown in Figure-2. Each generator is represented by an emf behind the sub-transient reactance. All impedances are expressed in per unit on a common MVA base. All resistances and shunt capacitances are neglected. The generators are operating on no load at their rated voltage with their emfs in phase. A three-phase fault occurs at bus 3 through a fault impedance of Zf = j0.19 per unit. (i) Using Th'evenin's theorem, obtain the impedance to the point of fault and the fault current in (ii) Determine the bus voltages per unit. ) j0.05 j0.075 j0.75 2 j0.30 j0.45 Figure-2: Single line diagram of the power system network for Q2 3
b) A fault occurs at bus 3 of the network shown in Figure Q4. Pre-fault nodal voltages throughout the network are of 1 p.u. and the impedance of the electric arc is neglected. Sequence impedance parameters of the generator, transmission lines, transformer and load are given in Figure Q4. V₁ = 120° p.u. V₂ = 120° p.u. V₂ = 1/0° p.u. V₂= 120° p.u. jXj0.1 p.u. JX2) 0.1 p.u. jX0j0.15 p.u. jXn-j0.2 p.u. 1 JX(2)-j0.2 p.u. 2 jX)=j0.25 p.u. JX20-10.15 p.u. jXa(z)-j0.2 p.u. 4 jX2(0)=j0.2 p.u. jXT(1) j0.1 p.u. jXT(2)=j0.15 p.u. jXT(0)=j0.1 p.u. Figure Q4. Circuit for problem 4b). = jXj0.1 p.u. j0.1 p.u. - JX(2) JXL(0) 10.1 p.u. = (i) Assuming a balanced excitation, draw the positive, negative and zero sequence Thévenin equivalent circuits as seen from bus 3. (ii) Determine the positive sequence fault current for the case when a three- phase-to-ground fault occurs at bus 3 of the network. (iii) Determine the short-circuit fault current for the case when a one-phase- to-ground fault occurs at bus…
b) A fault occurs at bus 2 of the network shown in Figure Q3. Pre-fault nodal voltages throughout the network are of 1 p.u. and the impedance of the electric arc is neglected. Sequence impedance parameters of the generator, transmission lines, and transformer are given in Figure Q3, where X and Y are the last two digits of your student number. JX20 /0.1X p.u. jXa2) 0.1X p.u. JX20 j0.2Y p.u. V,= 120° p.u. V, 120° p.u. V, 120° p.u. jX4-70.2X p.u. jX2 j0.2X p.u. jX o 0.2Y p.u. jXncay J0.25 p.u. jXna J0.25 p.u. 3 jXno0.3 p.u. jXTu) /0.2Y p.u. jXra j0.2Y p.u. - j0.2Y p.u. Xp-10.1X p.u. jXa j0.1X p.u. jXp0)- j0.05 p.u. 0 Figure Q3. Circuit for problem 3b). For example, if your student number is c1700123, then: jXac1) = j0.22 p.u., jXac2) = j0.22 p.u., and jXaco) = j0.23 p. u. X-2 Y=8 (iv) Determine the short-circuit fault current for the case when a phase-to- phase fault occurs at bus 2.
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning