Universe
Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Concept explainers

Question
Book Icon
Chapter 8, Problem 52Q

(a)

To determine

The angular distance in arcseconds between the star 2M1207 and its planet, as seen from Earth, considering this star is 170 light years from Earth.

Universe, Chapter 8, Problem 52Q

(a)

Expert Solution
Check Mark

Answer to Problem 52Q

Solution:

1.1 arcsec.

Explanation of Solution

Given data:

The star 2M1207 is 170 light years from Earth.

Formula used:

Write the expression for the small angle formula.

α=D(206265)d

Here, α is the small angle, D is the orbital distance, and d is the distance from the observer.

Explanation:

Recall the expression for the small angle formula.

α=D(206265 arcseconds)d

Substitute 55 au for D, 170 ly for d.

α=(55 au)(206265 arcsec)(170 ly)(63,240 au1 ly)=1.1 arcsec

Conclusion:

Hence, the angular distance in arcseconds between the star 2M1207 and its planet is 1.1 arcsec.

(b)

To determine

The orbital period of the orbiting star 2M1207, whose mass is 0.025 times that of the Sun, by considering that the distance between the star and its planet is the semi-major axis of the orbit.

(b)

Expert Solution
Check Mark

Answer to Problem 52Q

Solution:

2580 yrs.

Explanation of Solution

Given data:

The mass of star 2M1207 is 0.025 times that of the Sun.

Formula used:

Write the formula for the relation between orbital period and orbital distance according to Kepler’s third law.

P2=(4π2GM)a3

Here, P is the period, G is the gravitational constant, M is the mass of planet or star, and a is the orbital distance.

Explanation:

The formula for the relation between orbital period and orbital distance for Sun, according to Kepler’s third law is written as,

PSun2=(4π2GMSun)aSun3 …… (1)

Here, subscript ‘Sun’ is used for the respective quantities of the Sun.

The formula for the relation between orbital period and orbital distance for star 2M1207, according to Kepler’s third law is written as,

P2M12072=(4π2GM2M1207)a2M12073 …… (2)

Here, subscript ‘2M1207’ is used for the respective quantities of the star 2M1207.

Divide equation (2) by equation (1).

P2M12072PSun2=(4π2GM2M1207)a2M12073(4π2GMSun)aSun3P2M12072=(MSun)(a2M12073)(M2M1207)(aSun3)(PSun2)

Substitute 1 yr for PSun, 0.025MSun for M2M1207, 1 au for aSun and 55 au for a2M1207.

P2M1207=(MSun)(55 au)3(0.025MSun)(1 au)3(1 yr)2=2580 yrs

Conclusion:

Hence, the orbital period for star 2M1207 is 2580 yrs.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. These images were taken six months apart, first when Earth was as far to one side of Alpha Centauri as it can get and again when Earth was as far to the other side of Alpha Centauri as it can get. Consequently, the baseline between the two observing positions is how many AU across? Answer: 1.7 arcsec  USE 1.7 arcsec NOT 2.946 2. First, convert this to kilometers using your measurement of how many kilometers are in an AU.  3. Now convert the baseline to kilometers using the true value for the number of kilometers in an AU.  4. Calculate the distance to Alpha Centauri using parallax and the true baseline in kilometers.  5. Google and record the true value. 6. Calculate your percent error 7. Discuss significant sources of error
White Dwarf Size II. The white dwarf, Sirius B, contains 0.98 solar mass, and its density is about 2 x 106 g/cm?. Find the radius of the white dwarf in km to three significant digits. (Hint: Density = mass/volume, and the volume of a 4 sphere is Tr.) 3 km Compare your answer with the radii of the planets listed in the Table A-10. Which planet is this white dwarf is closely equal to in size? I Table A-10 I Properties of the Planets ORBITAL PROPERTIES Semimajor Axis (a) Orbital Period (P) Average Orbital Velocity (km/s) Orbital Inclination Planet (AU) (106 km) (v) (days) Eccentricity to Ecliptic Mercury 0.387 57.9 0.241 88.0 47.9 0.206 7.0° Venus 0.723 108 0.615 224.7 35.0 0.007 3.4° Earth 1.00 150 1.00 365.3 29.8 0.017 Mars 1.52 228 1.88 687.0 24.1 0.093 1.8° Jupiter 5.20 779 11.9 4332 13.1 0.049 1.30 Saturn 9.58 1433 29.5 10,759 9.7 0.056 2.5° 30,799 60,190 Uranus 19.23 2877 84.3 6.8 0.044 0.8° Neptune * By definition. 30.10 4503 164.8 5.4 0.011 1.8° PHYSICAL PROPERTIES (Earth = e)…
Consider the attached light curve for a transiting planet observed by the Kepler mission. If the host star is identical to the sun, what is the radius of this planet? Give your answer in terms of the radius of Jupiter. Brightness of Star Residual Flux 0.99 0.98 0.97 0.006 0.002 0.000 -8-881 -0.06 -0.04 -0.02 0.00 Time (days) → 0.02 0.04 0.06
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781337672252
Author:The Solar System
Publisher:Cengage