Power System Analysis and Design (MindTap Course List)
Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 5.42P

A three-phase power of 460 MW is transmitted to a substation located 500 km from the source of power. With V S = 1 . per unit, V R = 0.9 per unit, λ = 5000 km, Z c = 500 Ω , and δ = 36.87 ° , determine a nominal voltage level for the lossless transmission line based on Eq. (5.4.29) of the text. Using this result, find the theoretical three-phase maximum power that can be transferred by the lossless transmission line.

Blurred answer
Students have asked these similar questions
A 105MHz, 90 v peak signal is incident on a 50-ohm transmission line. The line is 125m long and is terminated in 300-ohm load. What is the SWR for this situation? Find the reflection coefficient.
capacitance 3. The impedance which is constant at any point on the transmission line is * O ZL. Zo. None of them Zin OZ 4. The propagation constant consists of two terms. the first term is the attenuation constant, and the second term denotes the phase constant. For Ingless transmission line, the attenuation constant becomes
A lossless transmission line has a capacitance per unit length of 90 uF/m (microFarad/meter) and an inductance per unit length of 1 nH/m. The load impedance ZI is purely resistive. Both the load impedance and the generator impedance are 50 ohms. Source voltage amplitude is unknown at this point. Find the characteristic impedance and the propagation velocity for this transmission line!
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Series compensation of long transmission lines; Author: Georg Schett;https://www.youtube.com/watch?v=smOqSxFBvVU;License: Standard Youtube License