Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 5.1P

Evaluate the Reynolds number for flow over a tube from the following data: D = 6  cm,  U = 1.0  m/s , ρ = 300  kg/m 3 ,   μ = 0.04  N s/m 2 .

Expert Solution & Answer
Check Mark
To determine

Reynolds number for flow over a tube

Answer to Problem 5.1P

Reynolds number for the given flow is 450.

Explanation of Solution

Given Information:

Diameter of the tube, D = 6 cm = 0.06 m

Free stream velocity of the fluid flow  U=1 m/s

Density of the fluid  ρ =300 kgm3

Dynamic Viscosity of the fluid μ=0.04N.sm2

Explanation:

Reynolds number =ρVDμ

Where ,

ρ=Density of the fluid

V=Average velocity of the fluid flow

D=Diameter of the tube

μ=Dynamic Viscosity of the fluid

Reynolds number (Re)=300*1*0.060.04=450 

For flow through tubes ,

If  Re  2300 ,flow is Laminar

If  Re  4000 ,flow is Turbulent

If  2300< Re < 4000 then flow is transitional flow

The given flow is a laminar flow.

Conclusion:

For the given flow Reynolds number is 450 which is less than 2300, thus the given flow is a laminar flow.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A viscous Newtonian fluid is flowing in a horizontal rectangular duct with dimensions, L=10 m, W=1 m and H=10 cm as shown in the diagram below. The volumetric flow rate of the fluid is 0.40 m3/s, the viscosity is 0.5 Pa s and the density 1.26 g/cm3. Calculate the pressure drop in the rectangular duct (in KPa)
An incompressible fluid (kinematic viscosity, 7.4 x10-7 m²/s, specific gravity, 0.88) is held between two parallel plates. If the top plate is moved with a velocity of 0.5 m/s while the bottom one is held stationary, the fluid attains a linear velocity profile in the gap of 0.5 mm between these plates; the shear stress in Pascals on the surface of top plate is rt of this book may be repro
Air at 30C and atmospheric pressure flows with a velocity of 6.5 m/s through a 7.5 cmdiameter pipe shown in Figure Q 1(a). The average wall roughness of the pipe is 0.002mmand the value of μ/ρ is 1.6x10-5 m2/s at 30C. Where μ is the coefficient of dynamic viscosityof air and ρ is the density of air. Determine the friction head loss across 30m length of thepipe.
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License