Modern Physics for Scientists and Engineers
Modern Physics for Scientists and Engineers
4th Edition
ISBN: 9781133103721
Author: Stephen T. Thornton, Andrew Rex
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 4, Problem 54P

(a)

To determine

Calculate forb in the ground state, by using fclassical in Equation (4.34)

(a)

Expert Solution
Check Mark

Answer to Problem 54P

The orbital frequency is 6.54×1015Hz.

Explanation of Solution

Write the expresion for fclassical to calculate  forb in the ground state.

    forb=me44ε02h3        (I)

Here, forb is the orbital frequency of electron around the nucleus, m is the mass of the electron, e is the charge in the electron, h is the Planck’s constant and ε0  the permittivity of free space.

Conclusion:

Substitute 9.11×1031kg for m , 1.60×1019C for e , 8.85×1012F/m for ε0 and 6.63×1034Js for h in equation (I).

    forb=(9.11×1031kg)(1.60×1019C)44(8.85×1012F/m)2(6.63×1034Js)3=6.54×1015Hz

Thus, the orbital frequency is 6.54×1015Hz.

(b)

To determine

Calculate forb in the ground state. By using equation (4.33a), but first calculate v and r .

(b)

Expert Solution
Check Mark

Answer to Problem 54P

The frequency forb in the ground state is 6.59×1015Hz.

Explanation of Solution

If an electron rotates around the nucleus then the expression for speed is given below:

    v=e4πε0mr

Here, v is the speed of an electron, e is the charge on electron, r is the radius and m is the mass of electron.

Multiply by c in both numerator and denominator.

    v=ec4πε0mc2r        (II)

Value of mc2 in electron Volt is:

    mc2=9.1×1031×(3×108)21.6×1019eV=511875eV

Write the expression for a0.

    a0=4πε0h2me2        (III)

Here, a0 is the Bohr’s radius,  and (h) is the h - bar constant .

Write the expression for frequency.

    f=v2πr        (IV)

Here, v is the velocity and r is the radius of the orbit

Conclusion:

Substitute 511875eV for mc2, 9×109 for 14πε0 , 1.6×1019 for e  and 5.29×1011m for r in equation (II).

    v=(9×109×1.6×1019eV.m)c(511875eV)(5.29×1011m)=1.44eVnm(3×108)(511875eV)(0.0529nm)=2.19×106m/s

Substitute 9.10938356×1031kg for m, 1.055×1034kgm/s2 for (h), 1.6021733×1019C for e and 8.8541878×1012F/m for ε0 in equation (III).   

a0=4π(8.8541878×1012F/m)(1.055×1034kgm/s2)2(9.10938356×1031kg)(1.6021733×1019C)2=5.2918×1011m

Substitute 2.19×106m/s for v and  5.2918×1011m for r in equation (IV).

    f=2.19×106m/s2π(5.2918×1011m)=6.59×1015Hz

Thus, the frequency forb in the ground state is 6.59×1015Hz.

(c)

To determine

Show that the mean value K is equal to the absolute value of the electron-nucleus system total energy and that this is 13.6 eV . Use this value of K  to determine  forb  from the relation for K.

(c)

Expert Solution
Check Mark

Answer to Problem 54P

The mean value K is equal to the absolute value of the electron-nucleus system total energy and that this is 13.6 eV proved below and value of  forb from the relation for K is 6.58×1015Hz.

Explanation of Solution

Write the expression for E.

    E=e28πε0a0

Here, E is the Energy.

Substitute 5.29×1011m for a0, 1.60×1019C for e and 8.85×1012F/m for ε0 in above expression.

E0=(1.60×1019C)28π(8.85×1012F/m)(5.29×1011m)=2.179×1018J(1eV(1.60×1019J))=13.60 eV

Write the expression for kinetic energy.

    K=e28πε0a0=|E|

Here, K is the kinetic energy.

From above equations it can be concluded that mean value K is equal to the absolute value of the electron-nucleus system total energy and that this is 13.6 eV .

Write the expression for kinetic energy.

    K=nhforb2

Rearrange above equation for forb and for n=1 .

    forb=2Kh        (V)

Conclusion:

Substitute 13.6 eV for K and 6.63×1034Js for h in equation (V).

    forb=2(13.6 eV)6.63×1034Js(1eV1.60×1019J)=6.58×1015Hz

Thus, the mean value K is equal to the absolute value of the electron-nucleus system total energy and that this is 13.6 eV proved below and value of  forb from the relation for K is 6.58×1015Hz.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
a) An electron and a 0.0500 kg bullet each have a velocity of magnitude 460 m/s, accurate to within 0.0100%. Within what lower limit could we determine the position of each object along the direction of the velocity? (Give the lower limit for the electron in mm and that for the bullet in m.) b) What If? Within what lower limit could we determine the position of each object along the direction of the velocity if the electron and the bullet were both relativistic, traveling at 350c measured with the same accuracy? (Give the lower limit for the electron in nm and that for the bullet in m.)
475 cm /volt-s, and E, = 1.1 eV, 6? Given these data for Si: 4, = 1350 cm/volt-s, H calculate the following. a) The lifetimes for the electron and for the hole. b) The intrinsic conductivity a at room temperature. c) The temperature dependence of o, assuming that electron collision is dominated by phonon scattering, and plot log o versus 1/T. %3D 7. Repeat Problem 6 for Ge, using Tables 6 L and 6 ?
In the relativistic treatment of the hydrogen atom (excluding QED), the 251/2 and 2P1/2 levels are found to be degenerate. Which of the following best describes why? Select an answer and submit. For keyboard navigation, use the up/down arrow keys to select an answer. a The degeneracy is a result of the rotational symmetry of the H-atom b d e The Darwin and spin-orbit terms exactly cancel for both levels Each individual contribution (mass-velocity, Darwin and spin-orbit) to the splitting only depend on the total angular momentum quantum number j The mass-velocity and Darwin terms exactly cancel for both levels The degeneracy is due to a subtle symmetry of a 1/r potential when n = 1 and would no longer be the case for other n.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON