Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 4, Problem 49P

In Example 4.5, we pushed on two blocks on a table. Suppose three blocks are in contact with one another on a frictionless, horizontal surface as shown in Figure P4.49. A horizontal force F is applied to m1. Take m1 = 2.00 kg, m2 = 3.00 kg, m3 = 4.00 kg, and F = 18.0 N. (a) Draw a separate free-body diagram for each block. (b) Determine the acceleration of the blocks. (c) Find the resultant force on each block. (d) Find the magnitudes of the contact forces between the blocks. (e) You are working on a construction project. A coworker is nailing up plasterboard on one side of a light partition, and you are on the opposite side, providing “backing” by leaning against the wall with your back pushing on it. Every hammer blow makes your back sting. The supervisor helps you put a heavy block of wood between the wall and your back. Using the situation analyzed in parts (a) through (d) as a model, explain how this change works to make your job more comfortable.

Chapter 4, Problem 49P, In Example 4.5, we pushed on two blocks on a table. Suppose three blocks are in contact with one

Figure P4.49

Blurred answer
Students have asked these similar questions
In Example 5.7, we pushed on two blocks on a table. Suppose three blocks are in contact with one another on a frictionless, horizontal surface as shown in the figure below. A horizontal force F is applied to m₁. Take m₁ = 2.00 kg, m₂ = 3.00 kg, m3 = 5.10 kg, and F = 16.0 N. (a) Draw a separate free-body diagram for each block. Choose File No file chosen This answer has not been graded yet. magnitude direction m₁ (b) Determine the acceleration of the blocks. m/s² m₂ m₂ |---Select--- ✓ (c) Find the resultant force on each block. block 1 N block 2 N block 3 N (d) Find the magnitudes of the contact forces between the blocks. between block 1 and 2 N N between block 2 and 3 Need Help? (e) You are working on a construction project. A coworker is nailing up plasterboard on one side of a light partition, and you are on the opposite side, providing "backing" by leaning against the wall with your back pushing on it. Every hammer blow makes your back sting. The supervisor helps you put a heavy…
Two blocks of masses M1=3.5 kg and M2=5.7 kg are at rest on a horizontal surface with a coefficient of friction uk = 0.12. You start them moving by pushing on block 1 with a force F1H = 33 N at an angel of theta = 42 degrees below the horizontal. Draw free body diagrams for M1 and M2 and label each force and what type of force it is, if known, which object causes the force and which object feels the force. Choose and label a coordinate system for your free body diagrams and apply N2L to the free body diagrams you have drawn in each direction. Determine the magnitude of the kinetic friction force on each block.
A person pushes horizontally with a force of 221 N on a 55.0 kg crate to move it to the right across a level floor. The coefficient of kinetic friction is 0.350. What is the magnitude of (a) the frictional force and (b) the crate's acceleration?   The directions of the four forces and the acceleration must be identified.     Make a free-body diagram. Please use the blue vector to specify forces and the pink vector for acceleration. Please make sure to label each vectors. The labels should none, mg, fk, a, FN, or Fpushing.

Chapter 4 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 4 - Prob. 4OQCh. 4 - Prob. 5OQCh. 4 - Prob. 6OQCh. 4 - Prob. 1CQCh. 4 - If a car is traveling due westward with a constant...Ch. 4 - A person holds a ball in her hand. (a) Identify...Ch. 4 - Prob. 4CQCh. 4 - If you hold a horizontal metal bar several...Ch. 4 - Prob. 6CQCh. 4 - Prob. 7CQCh. 4 - Prob. 8CQCh. 4 - Balancing carefully, three boys inch out onto a...Ch. 4 - Prob. 10CQCh. 4 - Prob. 11CQCh. 4 - Prob. 12CQCh. 4 - Prob. 13CQCh. 4 - Give reasons for the answers to each of the...Ch. 4 - Prob. 15CQCh. 4 - In Figure CQ4.16, the light, taut, unstretchable...Ch. 4 - Prob. 17CQCh. 4 - Prob. 18CQCh. 4 - Prob. 19CQCh. 4 - A force F applied to an object of mass m1 produces...Ch. 4 - (a) A car with a mass of 850 kg is moving to the...Ch. 4 - A toy rocket engine is securely fastened to a...Ch. 4 - Two forces, F1=(6i4j)N and F2=(3i+7j)N, act on a...Ch. 4 - Prob. 5PCh. 4 - Prob. 6PCh. 4 - Two forces F1 and F2 act on a 5.00-kg object....Ch. 4 - A 3.00-kg object is moving in a plane, with its x...Ch. 4 - A woman weighs 120 lb. Determine (a) her weight in...Ch. 4 - Prob. 10PCh. 4 - Prob. 11PCh. 4 - Prob. 12PCh. 4 - Prob. 13PCh. 4 - Prob. 14PCh. 4 - Prob. 15PCh. 4 - You stand on the seat of a chair and then hop off....Ch. 4 - Prob. 17PCh. 4 - A block slides down a frictionless plane having an...Ch. 4 - Prob. 19PCh. 4 - A setup similar to the one shown in Figure P4.20...Ch. 4 - Prob. 21PCh. 4 - The systems shown in Figure P4.22 are in...Ch. 4 - A bag of cement weighing 325 N hangs in...Ch. 4 - Prob. 24PCh. 4 - In Example 4.6, we investigated the apparent...Ch. 4 - Figure P4.26 shows loads hanging from the ceiling...Ch. 4 - Prob. 27PCh. 4 - An object of mass m1 = 5.00 kg placed on a...Ch. 4 - An object of mass m = 1.00 kg is observed to have...Ch. 4 - Two objects are connected by a light string that...Ch. 4 - Prob. 31PCh. 4 - A car is stuck in the mud. A tow truck pulls on...Ch. 4 - Two blocks, each of mass m = 3.50 kg, are hung...Ch. 4 - Two blocks, each of mass m, are hung from the...Ch. 4 - In Figure P4.35, the man and the platform together...Ch. 4 - Two objects with masses of 3.00 kg and 5.00 kg are...Ch. 4 - A frictionless plane is 10.0 m long and inclined...Ch. 4 - Prob. 39PCh. 4 - An object of mass m1 hangs from a string that...Ch. 4 - A young woman buys an inexpensive used car for...Ch. 4 - A 1 000-kg car is pulling a 300-kg trailer....Ch. 4 - An object of mass M is held in place by an applied...Ch. 4 - Prob. 44PCh. 4 - An inventive child named Nick wants to reach an...Ch. 4 - In the situation described in Problem 45 and...Ch. 4 - Two blocks of mass 3.50 kg and 8.00 kg are...Ch. 4 - Prob. 48PCh. 4 - In Example 4.5, we pushed on two blocks on a...Ch. 4 - Prob. 50PCh. 4 - Prob. 51PCh. 4 - Prob. 52PCh. 4 - Review. A block of mass m = 2.00 kg is released...Ch. 4 - A student is asked to measure the acceleration of...Ch. 4 - Prob. 55PCh. 4 - Prob. 56PCh. 4 - A car accelerates down a hill (Fig. P4.57), going...Ch. 4 - Prob. 58PCh. 4 - In Figure P4.53, the incline has mass M and is...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY