COLLEGE PHYSICS
COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 26, Problem 55QAP
To determine

(a)

Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is 0.000.

Expert Solution
Check Mark

Answer to Problem 55QAP

Wavelength of the Compton scattered photon is 0.140 nm and the kinetic energy of the scattered electron is 0 if the scattering angle is 0.000.

Explanation of Solution

Given:

Initial wavelength λi=0.140 nm and the scattering angle is 0.000

Formula used:

According to Compton scattering the change in wavelength of the incident photon is given by

  Δλ=(λfλi)=hmec(1cosθ) (1.1)

Now the energy of the scattered photon is

  Ef=hcλf (1.2)

Kinetic energy of the scattered electron is given by

  K=EiEf=hc(λfλiλfλi)=hc(Δλλfλi)(1.3)

Calculation:

For θ=0.000 using Eq. (1.1) we get,

  Δλ=hmec(1cos0°)=hmec(11)=0

So,

  λf=λi=0.140 nm

And using the value of Δλ=0 in Eq. (1.3), we get

K = 0.

Conclusion:

So the wavelength of the Compton scattered photon is 0.140 nm and the kinetic energy of the scattered electron is 0

To determine

(b)

Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is 30.000

Expert Solution
Check Mark

Answer to Problem 55QAP

Wavelength of the Compton scattered photon is 0.140325 nm and the kinetic energy of the scattered electron is 20.5 eV

Explanation of Solution

Given:

Initial wavelength λi=0.140 nm and the scattering angle is 30.000

Formula used:

According to Compton scattering the change in wavelength of the incident photon is given by

  Δλ=(λfλi)=hmec(1cosθ)(1.1)

Now the energy of the scattered photon is

  Ef=hcλf (1.2)

Kinetic energy of the scattered electron is given by

  K=EiEf=hc(λfλiλfλi)=hc(Δλλfλi)(1.3)

Calculation:

For θ=300 using Eq. (1.1) we get

  Δλ=(λfλi)=2.43×1012(1cos300) m=0.325×103 nmλf=0.140+0.325×103 nm = 0.140325 nm

Now using the values of Δλ, λf and λi in Eq. (1.3) we get

  K=hc( Δλ λ f λ i )=6.63× 10 34×3× 108×0.325× 10 120.140325×0.140× 10 18 Jor, K = 329× 10 201.6× 10 19eV=20.5 eV

[Above we have used 1 nm = 10-9 m and 1eV=1.6×1019J ]

Conclusion:

So the wavelength of the Compton scattered photon is 0.140325 nm and the kinetic energy of the scattered electron is 20.5 eV.

To determine

(c)

Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is 45.000.

Expert Solution
Check Mark

Answer to Problem 55QAP

Wavelength of the Compton scattered photon is 0.140712 nm and the kinetic energy of the scattered electron is 44.9 eV

Explanation of Solution

Given:

Initial wavelength λi=0.140 nm and the scattering angle is 45.000

Formula used:

According to Compton scattering the change in wavelength of the incident photon is given by

  Δλ=(λfλi)=hmec(1cosθ)(1.1)

Now the energy of the scattered photon is

  Ef=hcλf (1.2)

Kinetic energy of the scattered electron is given by,

  K=EiEf=hc(λfλiλfλi)=hc(Δλλfλi)(1.3)

Calculation:

For θ=45.000 using Eq. (1.1)

  Δλ=(λfλi)=2.43×1012(1cos450) mor, λf=0.140712 nm

Now using the values of Δλ, λf and λi in Eq. (1.3) and using the conversions as used earlier in part (b) above [1 nm = 10-9 m and 1eV=1.6×1019J ] we get

  K=44.9 eV

Conclusion:

Wavelength of the Compton scattered photon is 0.140712 nm and the kinetic energy of the scattered electron is 44.9 eV

To determine

(d)

Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is 60.000

Expert Solution
Check Mark

Answer to Problem 55QAP

Wavelength of the Compton scattered photon is 0.141215 nm and the kinetic energy of the scattered electron is 75.32 eV if the scattering angle is 60.000.

Explanation of Solution

Given:

Initial wavelength λi=0.140 nm and the scattering angle is 60.000

Formula used:

According to Compton scattering the change in wavelength of the incident photon is given by

  Δλ=(λfλi)=hmec(1cosθ)(1.1)

Now the energy of the scattered photon is

  Ef=hcλf (1.2)

Kinetic energy of the scattered electron is given by,

  K=EiEf=hc(λfλiλfλi)=hc(Δλλfλi)(1.3)

Calculation:

For θ=60.000 using Eq. (1.1)

  Δλ=(λfλi)=2.43×1012(1cos600) m = 0.001215 nmor, λf=0.141215 nm

Now using the values of Δλ, λf and λi in Eq. (1.3) and using the conversions as used earlier in part (b) above [1 nm = 10-9 m and 1eV=1.6×1019J ] we get,

  K=75.32 eV

Conclusion:

Wavelength of the Compton scattered photon is 0.141215 nm and the kinetic energy of the scattered electron is 75.32 eV

To determine

(e)

Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is 90.000

Expert Solution
Check Mark

Answer to Problem 55QAP

Wavelength of the Compton scattered photon is 0.14243 nm and the kinetic energy of the scattered electron is 151.32 eV

Explanation of Solution

Given:

Initial wavelength λi=0.140 nm and the scattering angle is 90.000

Formula used:

According to Compton scattering the change in wavelength of the incident photon is given by

  Δλ=(λfλi)=hmec(1cosθ) (1.1)

Now the energy of the scattered photon is

  Ef=hcλf (1.2)

Kinetic energy of the scattered electron is given by,

  K=EiEf=hc(λfλiλfλi)=hc(Δλλfλi)(1.3)

Calculation:

For θ = 900 using Eq. (1.1)

  Δλ=(λfλi)=2.43×1012(1cos900) m = 2.43×1012 mor, λf=0.14243 nm

Now using the values of Δλ, λf and λi in Eq. (1.3) and using the conversions as used earlier in part (b) above [1 nm = 10-9 m and 1eV=1.6×1019J ] we get

  K=151.32 eV

Conclusion:

Wavelength of the Compton scattered photon is 0.14243 nm and the kinetic energy of the scattered electron is 151.32 eV.

To determine

(f)

Wavelength of the Compton scattered photon and the kinetic energy of the scattered electron if the scattering angle is 180.000.

Expert Solution
Check Mark

Answer to Problem 55QAP

Wavelength of the Compton scattered photon is 0.14486 nm and the kinetic energy of the scattered electron is 297.43 eV

Explanation of Solution

Given:

Initial wavelength λi=0.140 nm and the scattering angle is 180.000

Formula used:

According to Compton scattering the change in wavelength of the incident photon is given by

  Δλ=(λfλi)=hmec(1cosθ)(1.1)

Now the energy of the scattered photon is

  Ef=hcλf (1.2)

Kinetic energy of the scattered electron is given by,

  K=EiEf=hc(λfλiλfλi)=hc(Δλλfλi)(1.3)

Calculation:

For θ = 1800 using Eq. (1.1)

  Δλ=(λfλi)=2.43×1012(1cos1800) m = 4.86×1012 mor, λf=0.14486 nm

Now using the values of Δλ, λf and λi in Eq. (1.3) and using the conversions as used earlier in part (b) above [1 nm = 10-9 m and 1eV=1.6×1019J ] we get

  K= 297.43 eV

Conclusion:

Wavelength of the Compton scattered photon is 0.14486 nm and the kinetic energy of the scattered electron is 297.43 eV

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
X-ray photons of wavelength 0.0248 nm are incident on a target and the Compton-scattered photons are observed at 80.0° above the photons' incident line of travel. [Use relativistic units for this problem!] (a) What is the wavelength of the scattered photons?  nm (b) What is the momentum of the incident photons? eV/c What is the momentum of the scattered photons? eV/c (c) What is the kinetic energy of the scattered electrons? eV (d) What is the momentum (magnitude and angle) of the scattered electrons? eV/c
A photon with wavelength X scatters off an electron at rest, at an angle with the incident direction. The Compton wavelength of the electron Ac = 0.0024 nm. a) For λ = 0.0006 nm and 0 = 53 degrees, find the wavelength X' of the scattered photon in nanometres. b) Obtain a formula for the energy of the electron Ee after collision, in terms of the universal constants h, c and the variables X, X' and Ac. The answer must be expressed in terms of these variables only. (Please enter an algebraic expression using latex format; do not input any numerical values) c) Using the energy conservation condition, find the value of the electron energy Ee after scattering in units of keV. d) Write an algebraic expression for the electron's momentum pe in terms of its energy Ee, its mass me and the speed of light c. e) What is the de Broglie wavelength of the scattered electron ? Express your answer in terms of Ee, me, and X and c. f) Find the value of the de Broglie wavelength of the scattered electron…
You want to use a microscope to study the structure of a mitochondrion about 1.00 um in size. To be able to observe small details within the mitochondrion, you want to use a wavelength of 0.0500 nm. If your microscope uses light of this wavelength, what is the momentum p of a photon? p = kg-m/s If your microscope uses light of this wavelength, what is the energy E of a photon? E = If instead your microscope uses electrons of this de Broglie wavelength, what is the momentum p. of an electron? Pe = kg-m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the velocity v of an electron? v = m/s If instead your microscope uses electrons of this de Broglie wavelength, what is the kinetic energy K of an electron? K = What advantage do your calculations suggest electrons have compared to photons? O An electron's charge allows it to attach to observed particles, whereas a photon's electric neutrality prevents it from moving close enough to the observed particles…

Chapter 26 Solutions

COLLEGE PHYSICS

Ch. 26 - Prob. 11QAPCh. 26 - Prob. 12QAPCh. 26 - Prob. 13QAPCh. 26 - Prob. 14QAPCh. 26 - Prob. 15QAPCh. 26 - Prob. 16QAPCh. 26 - Prob. 17QAPCh. 26 - Prob. 18QAPCh. 26 - Prob. 19QAPCh. 26 - Prob. 20QAPCh. 26 - Prob. 21QAPCh. 26 - Prob. 22QAPCh. 26 - Prob. 23QAPCh. 26 - Prob. 24QAPCh. 26 - Prob. 25QAPCh. 26 - Prob. 26QAPCh. 26 - Prob. 27QAPCh. 26 - Prob. 28QAPCh. 26 - Prob. 29QAPCh. 26 - Prob. 30QAPCh. 26 - Prob. 31QAPCh. 26 - Prob. 32QAPCh. 26 - Prob. 33QAPCh. 26 - Prob. 34QAPCh. 26 - Prob. 35QAPCh. 26 - Prob. 36QAPCh. 26 - Prob. 37QAPCh. 26 - Prob. 38QAPCh. 26 - Prob. 39QAPCh. 26 - Prob. 40QAPCh. 26 - Prob. 41QAPCh. 26 - Prob. 42QAPCh. 26 - Prob. 43QAPCh. 26 - Prob. 44QAPCh. 26 - Prob. 45QAPCh. 26 - Prob. 46QAPCh. 26 - Prob. 47QAPCh. 26 - Prob. 48QAPCh. 26 - Prob. 49QAPCh. 26 - Prob. 50QAPCh. 26 - Prob. 51QAPCh. 26 - Prob. 52QAPCh. 26 - Prob. 53QAPCh. 26 - Prob. 54QAPCh. 26 - Prob. 55QAPCh. 26 - Prob. 56QAPCh. 26 - Prob. 57QAPCh. 26 - Prob. 58QAPCh. 26 - Prob. 59QAPCh. 26 - Prob. 60QAPCh. 26 - Prob. 61QAPCh. 26 - Prob. 62QAPCh. 26 - Prob. 63QAPCh. 26 - Prob. 64QAPCh. 26 - Prob. 65QAPCh. 26 - Prob. 66QAPCh. 26 - Prob. 67QAPCh. 26 - Prob. 68QAPCh. 26 - Prob. 69QAPCh. 26 - Prob. 70QAPCh. 26 - Prob. 71QAPCh. 26 - Prob. 72QAPCh. 26 - Prob. 73QAPCh. 26 - Prob. 74QAPCh. 26 - Prob. 75QAPCh. 26 - Prob. 76QAPCh. 26 - Prob. 77QAPCh. 26 - Prob. 78QAPCh. 26 - Prob. 79QAPCh. 26 - Prob. 80QAPCh. 26 - Prob. 81QAPCh. 26 - Prob. 82QAPCh. 26 - Prob. 83QAPCh. 26 - Prob. 84QAPCh. 26 - Prob. 85QAPCh. 26 - Prob. 86QAPCh. 26 - Prob. 87QAPCh. 26 - Prob. 88QAPCh. 26 - Prob. 89QAPCh. 26 - Prob. 90QAPCh. 26 - Prob. 91QAPCh. 26 - Prob. 92QAPCh. 26 - Prob. 93QAPCh. 26 - Prob. 94QAPCh. 26 - Prob. 95QAPCh. 26 - Prob. 96QAPCh. 26 - Prob. 97QAPCh. 26 - Prob. 98QAPCh. 26 - Prob. 99QAPCh. 26 - Prob. 100QAPCh. 26 - Prob. 101QAPCh. 26 - Prob. 102QAPCh. 26 - Prob. 103QAPCh. 26 - Prob. 104QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning