Universe
Universe
11th Edition
ISBN: 9781319039448
Author: Robert Geller, Roger Freedman, William J. Kaufmann
Publisher: W. H. Freeman
bartleby

Concept explainers

Question
Book Icon
Chapter 17, Problem 33Q

(a)

To determine

The reason so that the equation mBmV=2.5log(bVbB) is correct.

(a)

Expert Solution
Check Mark

Answer to Problem 33Q

Solution: The equation mBmV=2.5log(bVbB) for the B-V color index is correct because the relation m2m1=2.5log(b1b2), which is used for different stars can be used for indexing the same star if it is seen from other sides, then the provided result is obtained.

Explanation of Solution

Given data:

The B-V color index is related to the color ratio (bV/bB) by the equation:

mBmV=2.5log(bVbB)

Formula used:

Magnitude difference related to the brightness ratio:

m2m1=2.5log(b1b2)

Here, m1 is the apparent magnitude of the star 1, m2 is the apparent magnitude of the star 2, b1 is the apparent brightness of the star 1 and b2 is the apparent brightness of the star 2.

Explanation:

Recall the expression that relates the magnitude difference to the brightness ratio.

m2m1=2.5log(b1b2)

Now, as the above expression is for two different of star but the same expression can be applied if the same star is seen from different sides. So, to obtain the expression for the same, replace the subscript 1 and 2 by B and V, respectively. So, the B-V color ratio (bV/bB) can be explained by the equation shown below:

mBmV=2.5log(bVbB)

Therefore, the provided equation is correct.

Conclusion:

The expression for the B-V color index is obtained by using the relation, m2m1=2.5log(b1b2).

(b)

To determine

The B-V color indices for the Bellatrix, the Sun, and the Betelgeuse by using the data in table 17-1.

(b)

Expert Solution
Check Mark

Answer to Problem 33Q

Solution:

0.23, 0.68 and 1.86 as the B-V color index is smaller, the star will be hotter.

Explanation of Solution

Given data:

Refer the table 17-1, to obtain the value.

The B-V color index is related to the color ratio (bV/bB) by the equation:

mBmV=2.5log(bVbB)

Formula used:

Magnitude difference related to the brightness ratio:

m2m1=2.5log(b1b2)

Here, m1 is the apparent magnitude of the star 1, m2 is the apparent magnitude of the star 2, b1 is the apparent brightness of the star 1 and b2 is the apparent brightness of the star 2.

Explanation:

Refer the table 17-1:

The B-V color index is related to the color ratio (bV/bB).

StarbV/bBBellatrix0.81Sun1.87Betelgeuse5.55

Refer the result of part (a):

The B-V color index is related to the color ratio (bV/bB) by the equation:

mBmV=2.5log(bVbB)

For Bellatrix:

Substitute 0.81 for bV/bB.

mBmV=2.5log(0.81)=0.23

For Sun:

Substitute 1.87 for bV/bB.

mBmV=2.5log(1.87)=0.68

For Betelgeuse:

Substitute 5.55 for bV/bB.

mBmV=2.5log(5.55)=1.86

The B-V color index is positive for a cold star and negative for a hot star because the hot stars are assigned lower number on the apparent magnitude scale while the cold stars are assigned a higher number.

Conclusion:

The B-V color indices for the Bellatrix is 0.23, the Sun is 0.68, and the Betelgeuse is 1.86. For the smaller B-V color index, the star will be hotter.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The origin of the above quote (with "flame" or "candle" sometimes substituted for "light") is unclear. It is often attributed to either Lao Tzu or to the character Eldon Tyrell from the 1982 movie Blade Runner.   Stars follow a similar law, although the factor isn't precisely 1/2. In this problem, you will figure out the precise factor that the quote should have to apply to stars. Using the proportionality relationships for stellar luminosity as a function of mass and stellar lifetime as a function of mass, combine the two equations to arrive at a proportionality for stellar lifetime as a function of luminosity. Consider a star with luminosity twice that of the Sun's. Compute the star's main sequence lifetime as a multiple of the Sun's main sequence lifetime. Enter your result below as a decimal. For example, if you found TT⊙=0.3, enter "0.3". (Here T is the star's lifetime and T⊙ is the Sun's main sequence lifetime.
As a star runs out of hydrogen to fuel nuclear fusion in its core, changes within the star usually cause it to leave the main sequence, expanding and cooling as it does so. Would a star with a radius 6 times that of the Sun, but a surface temperature 0.4 times that of the Sun, be more, or less luminous than the Sun? Show and explain your reasoning. You may assume the surface area of a sphere is A = 4πr2.
A star has a measured radial velocity of 100 km/s. If you measure the wavelength of a particular spectral line of Hydrogen as 486.42 nm, what was the laboratory wavelength (in nm) of the line? (Round your answer to at least one decimal place.) Which spectral line does this likely correspond to?   Balmer-alpha (656.3 nm) Balmer-beta (486.1 nm)     Balmer-gamma (434.0 nm) Balmer-delta (410.2 nm)

Chapter 17 Solutions

Universe

Ch. 17 - Prob. 11CCCh. 17 - Prob. 12CCCh. 17 - Prob. 13CCCh. 17 - Prob. 14CCCh. 17 - Prob. 15CCCh. 17 - Prob. 16CCCh. 17 - Prob. 17CCCh. 17 - Prob. 18CCCh. 17 - Prob. 19CCCh. 17 - Prob. 20CCCh. 17 - Prob. 21CCCh. 17 - Prob. 22CCCh. 17 - Prob. 23CCCh. 17 - Prob. 24CCCh. 17 - Prob. 1CLCCh. 17 - Prob. 2CLCCh. 17 - Prob. 3CLCCh. 17 - Prob. 4CLCCh. 17 - Prob. 1QCh. 17 - Prob. 2QCh. 17 - Prob. 3QCh. 17 - Prob. 4QCh. 17 - Prob. 5QCh. 17 - Prob. 6QCh. 17 - Prob. 7QCh. 17 - Prob. 8QCh. 17 - Prob. 9QCh. 17 - Prob. 10QCh. 17 - Prob. 11QCh. 17 - Prob. 12QCh. 17 - Prob. 13QCh. 17 - Prob. 14QCh. 17 - Prob. 15QCh. 17 - Prob. 16QCh. 17 - Prob. 17QCh. 17 - Prob. 18QCh. 17 - Prob. 19QCh. 17 - Prob. 20QCh. 17 - Prob. 21QCh. 17 - Prob. 22QCh. 17 - Prob. 23QCh. 17 - Prob. 24QCh. 17 - Prob. 25QCh. 17 - Prob. 26QCh. 17 - Prob. 27QCh. 17 - Prob. 28QCh. 17 - Prob. 29QCh. 17 - Prob. 30QCh. 17 - Prob. 31QCh. 17 - Prob. 32QCh. 17 - Prob. 33QCh. 17 - Prob. 34QCh. 17 - Prob. 35QCh. 17 - Prob. 36QCh. 17 - Prob. 37QCh. 17 - Prob. 38QCh. 17 - Prob. 39QCh. 17 - Prob. 40QCh. 17 - Prob. 41QCh. 17 - Prob. 42QCh. 17 - Prob. 43QCh. 17 - Prob. 44QCh. 17 - Prob. 45QCh. 17 - Prob. 46QCh. 17 - Prob. 47QCh. 17 - Prob. 48QCh. 17 - Prob. 49QCh. 17 - Prob. 50QCh. 17 - Prob. 51QCh. 17 - Prob. 52QCh. 17 - Prob. 53QCh. 17 - Prob. 54QCh. 17 - Prob. 55QCh. 17 - Prob. 56QCh. 17 - Prob. 57QCh. 17 - Prob. 58QCh. 17 - Prob. 59QCh. 17 - Prob. 60QCh. 17 - Prob. 61QCh. 17 - Prob. 62QCh. 17 - Prob. 63QCh. 17 - Prob. 64QCh. 17 - Prob. 65QCh. 17 - Prob. 66QCh. 17 - Prob. 67QCh. 17 - Prob. 68QCh. 17 - Prob. 69QCh. 17 - Prob. 70QCh. 17 - Prob. 71QCh. 17 - Prob. 72QCh. 17 - Prob. 73QCh. 17 - Prob. 74QCh. 17 - Prob. 75QCh. 17 - Prob. 76QCh. 17 - Prob. 77QCh. 17 - Prob. 78QCh. 17 - Prob. 79QCh. 17 - Prob. 80Q
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Text book image
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Text book image
The Solar System
Physics
ISBN:9781305804562
Author:Seeds
Publisher:Cengage
Text book image
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning