Heating Ventilating and Air Conditioning: Analysis and Design
Heating Ventilating and Air Conditioning: Analysis and Design
6th Edition
ISBN: 9780471470151
Author: Faye C. McQuiston, Jeffrey D. Spitler, Jerald D. Parker
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1.25P

A heat pump uses a 100,000-gallon swimming pooi as a heat source in the winter. When the heat pump is running at full capacity it is drawing 3.5 tons of energy from the pool. Assuming no heat gain to the pool from sunlight or ground conduction, how long would it take the heat pump, running at full capacity, to draw the pooi temperature down 20F?

Blurred answer
Students have asked these similar questions
1. A geothermal heat pump with a COP of 1.3 provides 48000 BTU/hr of heat to a building. Assuming an electrical power rate of $0.20/kWh. answer the following questions for this system: a. What would be the monthly cost to provide heat at a rate of 48000 BTU/hr if the heat was delivered by a simple electrical resistance heater? b. How much heat is drawn from the ground by the heat pump in that month, in kWh? c. What is the savings per month enjoyed by operating this heat pump for a month vs. a simple electrical resistance heater?
A homeowner is trying to decide whether to heat with a furnace rated at 95% efficiency or by an electrically powered heat pump. She lives in a town where electricity is produced by a coal-fired power plant that claims to operate with 1st law efficiency that is 55% of the Carnot limit. The heat pump's CoP is advertised to be 40% of the Carnot limit. For what range of outside temperatures To would the 2nd law efficiency of the furnace be greater than that of the heat pump? Assume T+ = 400°C, T- = T= 40°C. %3D
Pls. Answer thank you! An air-conditioning system is used to maintain a house at 75°F when the temperature outside is 95°F. The house is gaining the heat through the walls and windows at a rate of 1250 Btu/min, and the heat generation rate within the house from people, lights, and appliances amounts to 350 Btu/min. Determine the minimum power input required for this air-conditioning system.

Chapter 1 Solutions

Heating Ventilating and Air Conditioning: Analysis and Design

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Heat Transfer [Conduction, Convection, and Radiation]; Author: Mike Sammartano;https://www.youtube.com/watch?v=kNZi12OV9Xc;License: Standard youtube license