Inquiry into Physics
Inquiry into Physics
8th Edition
ISBN: 9781337515863
Author: Ostdiek
Publisher: Cengage
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 1CA

The original “clock” used to define the length of the second was the daily rotation of Earth about its axis. Why has this clock been replaced by one based on the oscillation period of light waves emitted by atoms like cesium and rubidium?

Expert Solution & Answer
Check Mark
To determine

The reason clocks based on the daily rotation has been replaced by the oscillation period of light waves emitted by atoms like cesium and rubidium.

Answer to Problem 1CA

The time period of the earth’s rotation is not fixed and to have a proper clock, it requires giving error free time period which is not possible. Hence, it is replaced by the oscillation period of light waves emitted by atoms like cesium and rubidium. The oscillation period of light waves emitted by atoms is fixed. Hence, the clock will give error free time.

Explanation of Solution

Introduction:

The earth’s rotation period is four minutes less than what we call a day. Due to this, the Sun’s position in the sky at noon is roughly fixed, but the stars slowly drift apart. So, the stars which are overhead today will slowly move in the sky until they will be overhead at noon 6 months apart.

If instead, a day was defined to be the time taken for earth to rotate, then according to above stated reason, the sun will be overhead on some day at midnight. The time period for oscillation of light waves emitted by the atoms of cesium and rubidium is always fixed. Hence, they will always give error free time period forever.

Conclusion:

The time given by the earth’s rotation won’t be same everyday as the earth’s rotation speed is not fixed. Hence, the clocks based on it will give wrong time. Hence, we use clocks based on the oscillations of light waves emitted by atoms like cesium and rubidium.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
On the planet Zebulon, the standard unit for length is the clorf (cl) and the standard unit for time is the beedle (be). After many years of research, you have determined that 1clort = 0.765 meters 1beedle = 1.957 seconds (1cl = 0.765m) (1be = 1.957s) If you are driving at a speed of 85mi / h , how fast are you going in terms of clorés per beedle (cl/be)? NOTE: 1 mi = 1609 m.
A planet with mass 8.07x1023 kg orbits a star with mass 1.18x1030 kg. The orbit is circular, and the distance from the planet to the sun is 121x106 km. What is the length of a year on this planet? Give your answer in earth years (1 earth year = 31,557,600 seconds).
All of the stars of the Big Dipper (part of the constellation Ursa Major) may appear to be the same distance from the earth, but in fact they are very far from each other. Figure shows the distances from the earth to each of these stars. The distances are given in light-years (ly), the distance that light travels in one year. One light-year equals 9.461 * 1015 m. (a) Alkaid and Merak are 25.6 apart in the earth’s sky. In a diagram, show the relative positions of Alkaid, Merak, and our sun. Find the distance in light-years from Alkaid to Merak. (b) To an inhabitant of a planet orbiting Merak, how many degrees apart in the sky would Alkaid and our sun be?

Chapter 1 Solutions

Inquiry into Physics

Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - Prob. 11QCh. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - Prob. 15QCh. 1 - (Indicates a review question, which means it...Ch. 1 - Prob. 17QCh. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - (Indicates a review question, which means it...Ch. 1 - Prob. 24QCh. 1 - Prob. 25QCh. 1 - Prob. 26QCh. 1 - Prob. 27QCh. 1 - A yacht is 20 m long. Express this length in feet.Ch. 1 - Prob. 2PCh. 1 - A convenient time unit for short time intervals is...Ch. 1 - One mile is equal to 1,609 m. Express this...Ch. 1 - A hypnotist, watch hanging from a chain swings...Ch. 1 - The quartz crystal used in an electric watch...Ch. 1 - A passenger jet flies from one airport to another...Ch. 1 - At the 2006 Winter Olympics in Torino, Italy, U.S....Ch. 1 - A runner in a marathon passes the 5-mile mark at 1...Ch. 1 - . The Moon is about 3.8 ×108 m from Earth....Ch. 1 - . In Figure 1.13, assume that m/s and m/s. Use a...Ch. 1 - . On a day when the wind is blowing toward the...Ch. 1 - . How far does a car going 25 m/s travel in 5 s?...Ch. 1 - . A long-distance runner has an average speed of 4...Ch. 1 - . Draw an accurate graph showing distance versus...Ch. 1 - The graph in Figure 1.38 shows the distance versus...Ch. 1 - . A high-performance sports car can go from 0 to...Ch. 1 - . As a baseball is being thrown it goes from 0 to...Ch. 1 - . A child attaches a rubber ball to string and...Ch. 1 - . A child sits on the edge of spinning...Ch. 1 - . A runner is going 10 m/s around a curved section...Ch. 1 - During a NASCAR race, a car goes 50 m/s around a...Ch. 1 - . A rocket accelerates from rest at a rate of 64...Ch. 1 - . Initially staionary, a train has a constant...Ch. 1 - . (a) Draw an accurate graph of the speed versus...Ch. 1 - . Draw an accurate graph of the velocity versus...Ch. 1 - . A skydiver jumps out of a helicopter and falls...Ch. 1 - . A rock is dropped off the side of a bridge and...Ch. 1 - . The roller coaster in Figure 1.39 starts at the...Ch. 1 - . During takeoff, an airplane goes from 0 to 50...Ch. 1 - Prob. 31PCh. 1 - . A bungee jumper falls for 1.3 s before the...Ch. 1 - . A drag-racing car goes from 0 to 300 mph in 5 s....Ch. 1 - Prob. 1CCh. 1 - The Moon's mass is 7.35 1022 kg, and it moves in a...Ch. 1 - A car is stopped at a red light. When the light...Ch. 1 - A spoils car is advertised to have a maximum...Ch. 1 - A spacecraft lands on a newly discovered planet...Ch. 1 - Prob. 6CCh. 1 - Prob. 7CCh. 1 - A race car starts from rest on a circular track...Ch. 1 - Prob. 9C
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY