The gravitational collapse time for the Sun is a constraint on the timescale for the formation of the Solar System: Using the mass of the Sun and a 6.67 X10-11 in S.I. units (m, kg, sec) as the value for G, calculate the gravitational collapse time in millions of years for the mass of the Sun in a nebula with radius 4 light years. Recall that: tgravity=R3GM−−−√tgravity=R3GM Group of answer choices 20 28 10 80

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter7: Gravity
Section: Chapter Questions
Problem 14PQ: Since 1995, hundreds of extrasolar planets have been discovered. There is the exciting possibility...
icon
Related questions
icon
Concept explainers
Question

The gravitational collapse time for the Sun is a constraint on the timescale for the formation of the Solar System: Using the mass of the Sun and a 6.67 X10-11 in S.I. units (m, kg, sec) as the value for G, calculate the gravitational collapse time in millions of years for the mass of the Sun in a nebula with radius 4 light years. Recall that:

tgravity=R3GM−−−√tgravity=R3GM

Group of answer choices
20
28
10
80
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Stellar evolution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning