A Water Balloon Battle. You are launching water balloons at a rival team using a large slingshot. The other team is set up on the opposite side of a flat-topped building that is 30.0 ft tall and 50.0 ft wide. Your reconnaissance team has reported that the opposition is set up 10.0 m from the wall of the building. Your balloon launcher is calibrated for launch speeds that can reach as high as 95 mph at angles between 0 and 85.0° from the horizontal. Since a direct shot is not possible (the opposing team is on the opposite side of the building), you plan to splash the other team by making a balloon explode on the ground near them. If your launcher is located 55.0 m from the building (opposite side as the opposing team), what should your launch velocity be ((a) magnitude and (b) direction) to land a balloon 5.0 meters beyond the opposing team with maximum impact (i.e. maximum vertical speed)? (a) Number i (b) Number i Units Units

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter2: Vectors
Section: Chapter Questions
Problem 51P: In an attempt to escape a desert island, a castaway builds a raft and sets out to sea. The wind...
icon
Related questions
Question
A Water Balloon Battle. You are launching water balloons at a rival team using a large slingshot. The other team is set up on the
opposite side of a flat-topped building that is 30.0 ft tall and 50.0 ft wide. Your reconnaissance team has reported that the opposition is
set up 10.0 m from the wall of the building. Your balloon launcher is calibrated for launch speeds that can reach as high as 95 mph at
angles between 0 and 85.0° from the horizontal. Since a direct shot is not possible (the opposing team is on the opposite side of the
building), you plan to splash the other team by making a balloon explode on the ground near them.
If your launcher is located 55.0 m from the building (opposite side as the opposing team), what should your launch velocity be ((a)
magnitude and (b) direction) to land a balloon 5.0 meters beyond the opposing team with maximum impact (i.e. maximum vertical
speed)?
(a) Number i
(b) Number i
Units
Units
Transcribed Image Text:A Water Balloon Battle. You are launching water balloons at a rival team using a large slingshot. The other team is set up on the opposite side of a flat-topped building that is 30.0 ft tall and 50.0 ft wide. Your reconnaissance team has reported that the opposition is set up 10.0 m from the wall of the building. Your balloon launcher is calibrated for launch speeds that can reach as high as 95 mph at angles between 0 and 85.0° from the horizontal. Since a direct shot is not possible (the opposing team is on the opposite side of the building), you plan to splash the other team by making a balloon explode on the ground near them. If your launcher is located 55.0 m from the building (opposite side as the opposing team), what should your launch velocity be ((a) magnitude and (b) direction) to land a balloon 5.0 meters beyond the opposing team with maximum impact (i.e. maximum vertical speed)? (a) Number i (b) Number i Units Units
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Vector basics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning