A nonlinear spring is compressed horizontally. The spring exerts a force that obeys the equation F(x) = Ax^½, where x is the distance from equilibrium that the spring is compressed and A is a constant. A physics student records data on the force exerted by the spring as it is compressed and plots the two graphs below, which include the data and the student's best-fit curves. a. From one or both of the given graphs, determine A. Be sure to show your work and specify the units. b. i. Determine an expression for the work done in compressing the spring a distance x. ii. Explain in a few sentences how you could use one or both of the graphs to estimate a numerical answer to part (b)i for a given value of x. c. The spring is mounted horizontally on a countertop that is 1.3 m high so that its equilibrium position is just at the edge of the countertop. The spring is compressed so that it stores 0.2 J of energy and is then used to launch a ball of mass 0.10 kg horizontally from the countertop. Neglecting friction, determine the horizontal distance d from the edge of the countertop to the point where the hall strikes the floor

An Introduction to Physical Science
14th Edition
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Chapter3: Force And Motion
Section: Chapter Questions
Problem 21SA
icon
Related questions
icon
Concept explainers
Question

A nonlinear spring is compressed horizontally. The spring exerts a force that obeys the equation F(x) = Ax^½, where x is the distance from equilibrium that the spring is compressed and A is a constant. A physics student records data on the force exerted by the spring as it is compressed and plots the two graphs below, which include the data and the student's best-fit curves.

a. From one or both of the given graphs, determine A. Be sure to show your work and specify the units.
b.

i. Determine an expression for the work done in compressing the spring a distance x.
ii. Explain in a few sentences how you could use one or both of the graphs to estimate a numerical answer to part (b)i for a given value of x.
c. The spring is mounted horizontally on a countertop that is 1.3 m high so that its equilibrium position is just at the edge of the countertop. The spring is compressed so that it stores 0.2 J of energy and is then used to launch a ball of mass 0.10 kg horizontally from the countertop. Neglecting friction, determine the horizontal distance d from the edge of the countertop to the point where the hall strikes the floor

8
8
7
6
6.
5
1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.05
0.1
0.15
0.2
0.25
0.3
0.35
x (m)
xf (m³)
Force (N)
Force (N)
Transcribed Image Text:8 8 7 6 6. 5 1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.05 0.1 0.15 0.2 0.25 0.3 0.35 x (m) xf (m³) Force (N) Force (N)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Potential energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
An Introduction to Physical Science
An Introduction to Physical Science
Physics
ISBN:
9781305079137
Author:
James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:
Cengage Learning
Inquiry into Physics
Inquiry into Physics
Physics
ISBN:
9781337515863
Author:
Ostdiek
Publisher:
Cengage
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning