A cylinder containing ideal gas is sealed by a piston that is above the gas. The piston is a cylindrical object, with a weight of 34.0 N, which can slide up or down in the cylinder without friction. The inner radius of the cylinder, and the radius of the piston, is 6.00 cm. The top of the piston is exposed to the atmosphere, and the atmospheric pressure is 101.3 kPa. The cylinder has a height of 30.0 cm, and, when the temperature of the gas is 20°C, the bottom of the piston is 15.0 cm above the bottom of the cylinder. (a) Determine the pressure of the gas in the cylinder. kPa (b) Find the number of moles of ideal gas in the cylinder. moles (c) Heat is aded, gradually raising the temperature of the gas to 185°C. Calculate the distance between the bottom of the cylinder and the bottom of the piston when the piston comes to new equilibrium position. cm

Physics for Scientists and Engineers
10th Edition
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter18: Temperature
Section: Chapter Questions
Problem 40AP: A vertical cylinder of cross-sectional area A is fitted with a tight-fitting, frictionless piston of...
icon
Related questions
Question
A cylinder containing ideal gas is sealed by a piston that is above the gas. The piston is a cylindrical object, with a weight of 34.0 N, which can slide up or down in the cylinder without friction. The
inner radius of the cylinder, and the radius of the piston, is 6.00 cm. The top of the piston is exposed to the atmosphere, and the atmospheric pressure is 101.3 kPa. The cylinder has a height of
30.0 cm, and, when the temperature of the gas is 20°C, the bottom of the piston is 15.0 cm above the bottom of the cylinder.
(a) Determine the pressure of the gas in the cylinder.
kPa
(b) Find the number of moles of ideal gas in the cylinder.
moles
(c) Heat is added, gradually raising the temperature of the gas to 185°C. Calculate the distance between the bottom of the cylinder and the bottom of the piston when the piston comes to its
new equilibrium position.
cm
Transcribed Image Text:A cylinder containing ideal gas is sealed by a piston that is above the gas. The piston is a cylindrical object, with a weight of 34.0 N, which can slide up or down in the cylinder without friction. The inner radius of the cylinder, and the radius of the piston, is 6.00 cm. The top of the piston is exposed to the atmosphere, and the atmospheric pressure is 101.3 kPa. The cylinder has a height of 30.0 cm, and, when the temperature of the gas is 20°C, the bottom of the piston is 15.0 cm above the bottom of the cylinder. (a) Determine the pressure of the gas in the cylinder. kPa (b) Find the number of moles of ideal gas in the cylinder. moles (c) Heat is added, gradually raising the temperature of the gas to 185°C. Calculate the distance between the bottom of the cylinder and the bottom of the piston when the piston comes to its new equilibrium position. cm
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Kinetic theory of gas
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University