A ball of mass m, =5.7 kg and a block of mass m, =3.1 kg are connected with a lightweight string over a pulley with moment of inertia I and radius R=0.25m. The coefficient of kinetic friction between the table top and the block of mass m, is uy = 0.5. If the magnitude of the acceleration is a=3.0 m/s2. a)What are the tensions T, and T, in the string. N T2= N b)Calculate the moment of inertia of the pulley. I= kg m2 c) What is the change of the kinetic energy of the system if the system is released from rest and the ball decends a distance h=5.4 m downward. ΔΚ -

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter10: Fixed-axis Rotation
Section: Chapter Questions
Problem 112AP: A system of point particles is rotating about a fixed axis at 4 rev/s. The particles are fixed with...
icon
Related questions
Question
100%
A ball of mass m, =5.7 kg and a block of mass m, =3.1 kg are connected with a lightweight string over a pulley with moment of inertia I and radius R=0.25m. The coefficient of kinetic friction between the table top and the block of mass m, is uy = 0.5. If the magnitude
of the acceleration is a=3.0 m/s2.
a)What are the tensions T, and T, in the string.
N
T2=
N
b)Calculate the moment of inertia of the pulley.
I=
kg m2
c) What is the change of the kinetic energy of the system if the system is released from rest and the ball decends a distance h=5.4 m downward.
ΔΚ -
Transcribed Image Text:A ball of mass m, =5.7 kg and a block of mass m, =3.1 kg are connected with a lightweight string over a pulley with moment of inertia I and radius R=0.25m. The coefficient of kinetic friction between the table top and the block of mass m, is uy = 0.5. If the magnitude of the acceleration is a=3.0 m/s2. a)What are the tensions T, and T, in the string. N T2= N b)Calculate the moment of inertia of the pulley. I= kg m2 c) What is the change of the kinetic energy of the system if the system is released from rest and the ball decends a distance h=5.4 m downward. ΔΚ -
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Knowledge Booster
Angular speed, acceleration and displacement
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning