A bag of cement weighing 525 N hangs in equilibrium from three wires as suggested in the figure below. Two of the wires make angles 8, = 62.0° and 6, = 43.0° with the horizontal. Assuming the system is in equilibrium, find the tensions T, T2, and T in the wires. 269.42 ! Consider the net force at the point where the three wires come together. What is the acceleration of this point? N 420.98 The horizontal component of your T, is not equal to the horizontal component of your T3, so the object would be accelerating horizontally. N T = 525 Ve, T, T2 T3 Need Help? Read It Watch It

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Topic Video
Question
A bag of cement weighing 525 N hangs in equilibrium from three wires as suggested in the figure below. Two of the wires make angles 0, = 62.0° and 0, = 43.0° with the horizontal. Assuming the system is in equilibrium, find the tensions T,, T,, and T, in the wires.
269.42
T =
Consider the net force at the point where the three wires come together. What is the acceleration of this point? N
420.98
Ta =
The horizontal component of your T, is not equal to the horizontal component of your T,, so the object would be accelerating horizontally. N
T3
525
N
T
T2
T3
Need Help?
Watch It
Read It
Transcribed Image Text:A bag of cement weighing 525 N hangs in equilibrium from three wires as suggested in the figure below. Two of the wires make angles 0, = 62.0° and 0, = 43.0° with the horizontal. Assuming the system is in equilibrium, find the tensions T,, T,, and T, in the wires. 269.42 T = Consider the net force at the point where the three wires come together. What is the acceleration of this point? N 420.98 Ta = The horizontal component of your T, is not equal to the horizontal component of your T,, so the object would be accelerating horizontally. N T3 525 N T T2 T3 Need Help? Watch It Read It
Expert Solution
steps

Step by step

Solved in 2 steps with 6 images

Blurred answer
Knowledge Booster
First law of motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON