26) Given the T-T-T curve below, select the process that will result in a microstructure of nearly all bainite. a. Cool to 400°C, hold for 20 seconds, then quench to room temperature b. Cool to 500°C, hold for 10 seconds, then quench to room temperature c. Quench to 125°C, hold for 10 seconds, then reheat to 600°C for more than 100 seconds d. Cool to 725°C, hold for 1,000 seconds, then quench to 125°C e. Cool to 600°C, hold for 1 second, the quench to room temperature Temperature (°C) f. none of the above 900 800 H A+C 1600 1400 700- 1200 A+P 600 P 1000 500H A+B 800 400- Temperature (°F) 4 A 300- M(start) 200 M(50%) 100- M(90%) 600 50% T 0 1 10 102 103 10 105 106 Time (s) 400 200 27) Fatigue failure situations are typically dependent upon which combination of the following factors? a. Slip plane, slip direction, and orientation of the applied load b. Yield strength, elastic modulus, and ductility of the material c. Temperature, time, and applied stress d. Stress amplitude, frequency of loading, and number of cycles e. Flaw size, crack-tip radius, and Kic value of the material 28) Using the Fe-C phase diagram (included in the equation sheet), calculate the phase weight fraction of Fe3C expected in a pearlitic steel microstructure under equilibrium conditions assuming a bulk composition of 0.45 wt% carbon. a. 93.6 wt% Fe3C b. 66.3 wt% Fe3C c. 36.7 wt% Fe3C d. 6.4 wt% Fe3C e. 4.5 wt% Fe3C

Materials Science And Engineering Properties
1st Edition
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Charles Gilmore
Chapter5: Phase Transformations And Phase Diagrams
Section: Chapter Questions
Problem 5.18P
icon
Related questions
Question
26) Given the T-T-T curve below, select the process that will result in a microstructure of nearly all
bainite.
a. Cool to 400°C, hold for 20 seconds, then quench to room temperature
b. Cool to 500°C, hold for 10 seconds, then quench to room temperature
c. Quench to 125°C, hold for 10 seconds, then reheat to 600°C for more than 100 seconds
d. Cool to 725°C, hold for 1,000 seconds, then quench to 125°C
e. Cool to 600°C, hold for 1 second, the quench to room temperature
Temperature (°C)
f.
none of the above
900
800 H
A+C
1600
1400
700-
1200
A+P
600
P
1000
500H
A+B
800
400-
Temperature (°F)
4
A
300-
M(start)
200
M(50%)
100- M(90%)
600
50%
T
0
1
10
102
103
10
105
106
Time (s)
400
200
27) Fatigue failure situations are typically dependent upon which combination of the following
factors?
a. Slip plane, slip direction, and orientation of the applied load
b. Yield strength, elastic modulus, and ductility of the material
c. Temperature, time, and applied stress
d. Stress amplitude, frequency of loading, and number of cycles
e. Flaw size, crack-tip radius, and Kic value of the material
28) Using the Fe-C phase diagram (included in the equation sheet), calculate the phase weight
fraction of Fe3C expected in a pearlitic steel microstructure under equilibrium conditions
assuming a bulk composition of 0.45 wt% carbon.
a. 93.6 wt% Fe3C
b. 66.3 wt% Fe3C
c.
36.7 wt% Fe3C
d. 6.4 wt% Fe3C
e. 4.5 wt% Fe3C
Transcribed Image Text:26) Given the T-T-T curve below, select the process that will result in a microstructure of nearly all bainite. a. Cool to 400°C, hold for 20 seconds, then quench to room temperature b. Cool to 500°C, hold for 10 seconds, then quench to room temperature c. Quench to 125°C, hold for 10 seconds, then reheat to 600°C for more than 100 seconds d. Cool to 725°C, hold for 1,000 seconds, then quench to 125°C e. Cool to 600°C, hold for 1 second, the quench to room temperature Temperature (°C) f. none of the above 900 800 H A+C 1600 1400 700- 1200 A+P 600 P 1000 500H A+B 800 400- Temperature (°F) 4 A 300- M(start) 200 M(50%) 100- M(90%) 600 50% T 0 1 10 102 103 10 105 106 Time (s) 400 200 27) Fatigue failure situations are typically dependent upon which combination of the following factors? a. Slip plane, slip direction, and orientation of the applied load b. Yield strength, elastic modulus, and ductility of the material c. Temperature, time, and applied stress d. Stress amplitude, frequency of loading, and number of cycles e. Flaw size, crack-tip radius, and Kic value of the material 28) Using the Fe-C phase diagram (included in the equation sheet), calculate the phase weight fraction of Fe3C expected in a pearlitic steel microstructure under equilibrium conditions assuming a bulk composition of 0.45 wt% carbon. a. 93.6 wt% Fe3C b. 66.3 wt% Fe3C c. 36.7 wt% Fe3C d. 6.4 wt% Fe3C e. 4.5 wt% Fe3C
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Materials Science And Engineering Properties
Materials Science And Engineering Properties
Civil Engineering
ISBN:
9781111988609
Author:
Charles Gilmore
Publisher:
Cengage Learning
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,