Henry Gray (1825–1861). Anatomy of the Human Body. 1918.
pages 50
longitudinal groove appears on the dorsal surface of either half and divides it into a medial column, the paraxial mesoderm, lying on the side of the neural tube, and a lateral portion, the lateral mesoderm. The mesoderm in the floor of the groove connects the paraxial with the lateral mesoderm and is known as the intermediate cell-mass; in it the genito-urinary organs are developed. The lateral mesoderm splits into two layers, an outer or somatic, which becomes applied to the inner surface of the ectoderm, and with it forms the somatopleure; and an inner or splanchnic, which adheres to the entoderm, and with it forms the splanchnopleure (Fig. 16). The space between the two layers of the lateral mesoderm is termed the celom. |
6. The Neural Groove and Tube |
FIG. 17– Human embryo—length, 2 mm. Dorsal view, with the amnion laid open. X 30. (After Graf Spee.) (See enlarged image) |
In front of the primitive streak two longitudinal ridges, caused by a folding up of the ectoderm, make their appearance, one on either side of the middle line (Fig. 16). These are named the neural folds; they commence some little distance behind the anterior end of the embryonic disk, where they are continuous with each other, and from there gradually extend backward, one on either side of the anterior end of the primitive streak. Between these folds is a shallow median groove, the neural groove (Figs. 16, 17). The groove gradually deepens as the neural folds become elevated, and ultimately the folds meet and coalesce in the middle line and convert the groove into a closed tube, the neural tube or canal (Fig. 18), the ectodermal wall of which forms the rudiment of the nervous system. After the coalescence of the neural folds over the anterior end of the primitive streak, the blastopore no longer opens on the surface but into the closed canal of the neural tube, and thus a transitory communication, the neurenteric canal, is established between the neural tube and the primitive digestive tube. The coalescence of the neural folds occurs first in the region of the hind-brain, and from there extends forward and backward; toward the end of the third week the front opening (anterior neuropore) of the tube finally closes at the anterior end of the future brain, and forms a recess which is in contact, for a time, with the overlying ectoderm; the hinder part of the neural groove presents for a time a rhomboidal shape, and to this |