dots-menu
×

Home  »  Anatomy of the Human Body  »  pages 1018

Henry Gray (1825–1861). Anatomy of the Human Body. 1918.

pages 1018

cone-fibers of which are almost horizontal in direction; (3) an exceedingly thin inner plexiform layer. The pigmented layer is thicker and its pigment more pronounced than elsewhere. The color of the macula seems to imbue all the layers except that of the rods and cones; it is of a rich yellow, deepest toward the center of the macula, and does not appear to be due to pigment cells, but simply to a staining of the constituent parts.
  At the ora serrata the nervous layers of the retina end abruptly, and the retina is continued onward as a single layer of columnar cells covered by the pigmented layer. This double layer is known as the pars ciliaris retinæ, and can be traced forward from the ciliary processes on to the back of the iris, where it is termed the pars iridica retinæ or uvea.
  The arteria centralis retinæ (Fig. 879) and its accompanying vein pierce the optic nerve, and enter the bulb of the eye through the porus opticus. The artery immediately bifurcates into an upper and a lower branch, and each of these again divides into a medial or nasal and a lateral or temporal branch, which at first run between the hyaloid membrane and the nervous layer; but they soon enter the latter, and pass forward, dividing dichotomously. From these branches a minute capillary plexus is given off, which does not extend beyond the inner nuclear layer. The macula receives two small branches (superior and inferior macular arteries) from the temporal branches and small twigs directly from the central artery; these do not, however, reach as far as the fovea centralis, which has no bloodvessels. The branches of the arteria centralis retinæ do not anastomose with each other—in other words they are terminal arteries. In the fetus, a small vessel, the arteria hyaloidea, passes forward as a continuation of the arteria centralis retinæ through the vitreous humor to the posterior surface of the capsule of the lens.
 
1c. 2. The Refracting Media
 
  The refracting media are three, viz.:
Aqueous humor.
Vitreous body.
Crystalline lens.

The Aqueous Humor (humor aqueus).—The aqueous humor fills the anterior and posterior chambers of the eyeball. It is small in quantity, has an alkaline reaction, and consists mainly of water, less than one-fiftieth of its weight being solid matter, chiefly chloride of sodium.

The Vitreous Body (corpus vitreum).—The vitreous body forms about four-fifths of the bulb of the eye. It fills the concavity of the retina, and is hollowed in front, forming a deep concavity, the hyaloid fossa, for the reception of the lens. It is transparent, of the consistence of thin jelly, and is composed of an albuminous fluid enclosed in a delicate transparent membrane, the hyaloid membrane. It has been supposed, by Hannover, that from its surface numerous thin lamellæ are prolonged inward in a radiating manner, forming spaces in which the fluid is contained. In the adult, these lamellæ cannot be detected even after careful microscopic examination in the fresh state, but in preparations hardened in weak chromic acid it is possible to make out a distinct lamellation at the periphery of the body. In the center of the vitreous body, running from the entrance of the optic nerve to the posterior surface of the lens, is a canal, the hyaloid canal, filled with lymph and lined by a prolongation of the hyaloid membrane. This canal, in the embryonic vitreous body, conveyed the arteria hyaloidea from the central artery of the retina to the back of the lens. The fluid from the vitreous body is nearly pure water; it contains, however, some salts, and a little albumin.
  The hyaloid membrane envelopes the vitreous body. The portion in front of the ora serrata is thickened by the accession of radial fibers and is termed the zonula ciliaris (zonule of Zinn). Here it presents a series of radially arranged furrows, in which the ciliary processes are accommodated and to which they adhere, as is shown by the fact that when they are removed some of their pigment remains attached to the zonula. The zonula ciliaris splits into two layers, one of which is thin and lines the hyaloid fossa; the other is named the suspensory ligament of the lens: it is thicker, and passes over the ciliary body to be attached to the capsule of the lens a short distance in front of its equator. Scattered and delicate fibers are also attached to the region of the equator itself. This ligament retains the lens in position, and is relaxed by the contraction of the meridional fibers of the Ciliaris muscle, so that the lens is allowed to become more convex. Behind