In a popular amusement park ride, a rotating cylinder of radius 3.00 m is set in rotation at an angular speed of 5.00 rad/s, as in Figure P7.75. The floor then drops away, leaving the riders suspended against the wall in a vertical position. What minimum coefficient of friction between a rider’s clothing and the wall is needed to keep the rider from slipping? Hint: Recall that the magnitude of the maximum force of static friction is equal to μsn, where n is the normal force—in this case, the force causing the centripetal acceleration.

Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter6: Circular Motion And Other Applications Of Newton's Laws
Section: Chapter Questions
Problem 32AP: Why is the following situation impossible? A mischievous child goes to an amusement park with his...
icon
Related questions
icon
Concept explainers
Question

In a popular amusement park ride, a rotating cylinder of radius 3.00 m is set in rotation at an angular speed of 5.00 rad/s, as in Figure P7.75. The floor then drops away, leaving the riders suspended against the wall in a vertical position. What minimum coefficient of friction between a rider’s clothing and the wall is needed to keep the rider from slipping? Hint: Recall that the magnitude of the maximum force of static friction is equal to μsn, where n is the normal force—in this case, the force causing the centripetal acceleration.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Moment of inertia
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University