we are given this situation: snow is falling at a constant rate of 3/5 in per hour and is being removed at a constant rate of 45% of the amount of snow on the ground per hour. The height of snow as a function of time is h(t) where our initial condition is h(0)=4. Our differential equation would thus be dh/dt = 3/5 - (9/20)h. Solving this gives h(t)=4/3 + (8/3)e^(-(9/20)t). All of the snow cannot be removed under these conditions because we cannot solve for h(t)=0 because it is undefined. The lowest the snow can reach is about 4/3 inches. But how could we change the rate of snowfall and rate of snow removal so that h(t) could equal zero?

Calculus For The Life Sciences
2nd Edition
ISBN:9780321964038
Author:GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Publisher:GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Chapter11: Differential Equations
Section11.1: Solutions Of Elementary And Separable Differential Equations
Problem 59E: According to the solution in Exercise 58 of the differential equation for Newtons law of cooling,...
icon
Related questions
Question
100%

we are given this situation: snow is falling at a constant rate of 3/5 in per hour and is being removed at a constant rate of 45% of the amount of snow on the ground per hour. The height of snow as a function of time is h(t) where our initial condition is h(0)=4. Our differential equation would thus be dh/dt = 3/5 - (9/20)h. Solving this gives h(t)=4/3 + (8/3)e^(-(9/20)t). All of the snow cannot be removed under these conditions because we cannot solve for h(t)=0 because it is undefined. The lowest the snow can reach is about 4/3 inches. But how could we change the rate of snowfall and rate of snow removal so that h(t) could equal zero? 

Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus For The Life Sciences
Calculus For The Life Sciences
Calculus
ISBN:
9780321964038
Author:
GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Publisher:
Pearson Addison Wesley,