The attractive and repulsive forces in an atom are rather complex. An electron is attracted to the protons in the nucleus, but it is also repelled by the other electrons in the atom. It is important to note however that the attractive force of the nucleus is NOT divided up among the electrons in the atom. Each electron gets approximately the full attractive force of the nucleus (minus the repulsive effects of other electrons). Compare the diagram below to set D in Model 3. Notice the similarity in attractive force. 0.10 nm 0.10 nm approx. 4.60 x 10- (on each electron) Model 4 – Period 3 Elements Aluminum Chlorine Sodium What does it MEAN? What do you WONDER? What do you SEE?

Introductory Chemistry: An Active Learning Approach
6th Edition
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Mark S. Cracolice, Ed Peters
Chapter13: Structure And Shape
Section: Chapter Questions
Problem 49E
icon
Related questions
icon
Concept explainers
Question
Read This!
The attractive and repulsive forces in an atom are rather complex. An electron is attracted to the protons
in the nucleus, but it is also repelled by the other electrons in the atom. It is important to note however
that the attractive force of the nucleus is NOT divided up among the electrons in the atom. Each electron
gets approximately the full attractive force of the nucleus (minus the repulsive effects of other electrons).
Compare the diagram below to set D in Model 3. Notice the similarity in attractive force.
0.10 nm
0.10 nm
approx. 4.60 x 10-8
(on each electron)
Model 4 – Period 3 Elements
Aluminum
Chlorine
Sodium
What does it MEAN?
What do you WONDER?
What do you SEE?
Transcribed Image Text:Read This! The attractive and repulsive forces in an atom are rather complex. An electron is attracted to the protons in the nucleus, but it is also repelled by the other electrons in the atom. It is important to note however that the attractive force of the nucleus is NOT divided up among the electrons in the atom. Each electron gets approximately the full attractive force of the nucleus (minus the repulsive effects of other electrons). Compare the diagram below to set D in Model 3. Notice the similarity in attractive force. 0.10 nm 0.10 nm approx. 4.60 x 10-8 (on each electron) Model 4 – Period 3 Elements Aluminum Chlorine Sodium What does it MEAN? What do you WONDER? What do you SEE?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Basics in Organic Reaction Mechanisms
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introductory Chemistry: An Active Learning Approa…
Introductory Chemistry: An Active Learning Approa…
Chemistry
ISBN:
9781305079250
Author:
Mark S. Cracolice, Ed Peters
Publisher:
Cengage Learning
Introductory Chemistry: A Foundation
Introductory Chemistry: A Foundation
Chemistry
ISBN:
9781337399425
Author:
Steven S. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
World of Chemistry, 3rd edition
World of Chemistry, 3rd edition
Chemistry
ISBN:
9781133109655
Author:
Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:
Brooks / Cole / Cengage Learning
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Introductory Chemistry For Today
Introductory Chemistry For Today
Chemistry
ISBN:
9781285644561
Author:
Seager
Publisher:
Cengage
Organic Chemistry: A Guided Inquiry
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:
9780618974122
Author:
Andrei Straumanis
Publisher:
Cengage Learning