Q4/ A room on the second floor of a house with a balcony has a door. The door made of teak (wood) and it contains a large sheet of glass (outside winter type) in the middle and constitutes 80% of the area of the door. Door thickness is 40 mm and the temperature in the room 25 °C when the temperature is in the balcony 8 °C. Calculate the rate of heat loss from the room to the balcony through the door. The door dimensions 2m x 1m. Assume Inside and outside still air thermal resistance f= 8.29 W/m2 °C and fo= 34.1 W/m2 °C respectively

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter3: Transient Heat Conduction
Section: Chapter Questions
Problem 3.42P
icon
Related questions
Question
Q4/ A room on the second floor of a house with a balcony has a door. The door made
of teak (wood) and it contains a large sheet of glass (outside winter type) in the
middle and constitutes 80% of the area of the door. Door thickness is 40 mm and the
temperature in the room 25. °C when the temperature is in the balcony 8 °C. Calculate
the rate of heat loss from the room to the balcony through the door. The door
dimensions 2m x 1m. Assume Inside and outside still air thermal resistance f= 8.29
W/m2 °C and f. 34.1 W/m2 °C respectively
Transcribed Image Text:Q4/ A room on the second floor of a house with a balcony has a door. The door made of teak (wood) and it contains a large sheet of glass (outside winter type) in the middle and constitutes 80% of the area of the door. Door thickness is 40 mm and the temperature in the room 25. °C when the temperature is in the balcony 8 °C. Calculate the rate of heat loss from the room to the balcony through the door. The door dimensions 2m x 1m. Assume Inside and outside still air thermal resistance f= 8.29 W/m2 °C and f. 34.1 W/m2 °C respectively
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning