Please help me with this practice problem in python : Implement two-level iterative method B = B_{TL} for graph Laplacian matrices. We want the symmetric B. Components: Given a graph, construct its graph Laplacian matrix. Then using Luby's algorithm, construct the P matrix that ensures a prescribed coarsening factor, e.g., 2, 4, or 8 times smaller number of coarse vertices. Since the graph Laplacian matrix is singular (it has the constants in its nullspace), to make it invertible, make its last row and columns zero, but keep the diagonal as it were (nonzero). The resulting modified graph Laplacian matrix A is invertible and s.p.d.. Form the coarse matrix A_c = P^TAP. To implement symmetric two-level cycle use one of the following M and M^T: (i) M is forward Gauss-Seidel, M^T - backward Gauss-Seidel (both corresponding to A) (ii) M = M^T - the ell_1 smoother. Compare the performance (convergence properties in terms of number of iterations) of B w.r.t. just using the smoother M in a stationary iterative method. Optionally, you may try to implement the multilevel version of B.

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
Please help me with this practice problem in python : Implement two-level iterative method B = B_{TL} for graph Laplacian matrices. We want the symmetric B. Components: Given a graph, construct its graph Laplacian matrix. Then using Luby's algorithm, construct the P matrix that ensures a prescribed coarsening factor, e.g., 2, 4, or 8 times smaller number of coarse vertices. Since the graph Laplacian matrix is singular (it has the constants in its nullspace), to make it invertible, make its last row and columns zero, but keep the diagonal as it were (nonzero). The resulting modified graph Laplacian matrix A is invertible and s.p.d.. Form the coarse matrix A_c = P^TAP. To implement symmetric two-level cycle use one of the following M and M^T: (i) M is forward Gauss-Seidel, M^T - backward Gauss-Seidel (both corresponding to A) (ii) M = M^T - the ell_1 smoother. Compare the performance (convergence properties in terms of number of iterations) of B w.r.t. just using the smoother M in a stationary iterative method. Optionally, you may try to implement the multilevel version of B.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps

Blurred answer
Knowledge Booster
Polynomial time
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education