Learning Goal: To understand the Bohr model of the hydrogen atom. n 1913 Niels Bohr formulated a method of calculating the different energy levels of the hydrogen atom. He did this by combining both Classical and quantum ideas. In this problem, we go hrough the steps needed to understand the Bohr model of the atom. Part A Consider an electron with charge -e and mass m orbiting in a circle around a hydrogen nucleus (a single proton) with charge +e. In the classical model, the electron orbits around the nucleus, being held in orbit by the electromagnetic interaction between itself and the protons in the nucleus, much like planets orbit around the sun, being held in orbit by their gravitational interaction. When the electron is in a circular orbit, it must meet the condition for circular motion: The magnitude of the net force toward the center, Fe, is equal to mv²/r. Given these two pieces of information, deduce the velocity of the electron as it orbits around the nucleus. Express your answer in terms of e, m, r, and €0, the permittivity of free space. ▸ View Available Hint(s) v= 15| ΑΣΦ 1 πενη e 2 ?

Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter41: Atomic Physics
Section: Chapter Questions
Problem 10P
icon
Related questions
icon
Concept explainers
Question

Please help with problem A

Learning Goal:
To understand the Bohr model of the hydrogen
atom.
In 1913 Niels Bohr formulated a method of
calculating the different energy levels of the
hydrogen atom. He did this by combining both
classical and quantum ideas. In this problem, we go
through the steps needed to understand the Bohr
model of the atom.
Part A
Consider an electron with charge -e and mass m orbiting in a circle around a hydrogen nucleus (a
single proton) with charge +e. In the classical model, the electron orbits around the nucleus, being
held in orbit by the electromagnetic interaction between itself and the protons in the nucleus, much
like planets orbit around the sun, being held in orbit by their gravitational interaction. When the
electron is in a circular orbit, it must meet the condition for circular motion: The magnitude of the net
force toward the center, F, is equal to mv²/r. Given these two pieces of information, deduce the
velocity v of the electron as it orbits around the nucleus.
Express your answer in terms of e, m, r, and eo, the permittivity of free space.
► View Available Hint(s)
v=
[5] ΑΣΦ
1
πεπη
e
Submit
Previous Answers
?
Transcribed Image Text:Learning Goal: To understand the Bohr model of the hydrogen atom. In 1913 Niels Bohr formulated a method of calculating the different energy levels of the hydrogen atom. He did this by combining both classical and quantum ideas. In this problem, we go through the steps needed to understand the Bohr model of the atom. Part A Consider an electron with charge -e and mass m orbiting in a circle around a hydrogen nucleus (a single proton) with charge +e. In the classical model, the electron orbits around the nucleus, being held in orbit by the electromagnetic interaction between itself and the protons in the nucleus, much like planets orbit around the sun, being held in orbit by their gravitational interaction. When the electron is in a circular orbit, it must meet the condition for circular motion: The magnitude of the net force toward the center, F, is equal to mv²/r. Given these two pieces of information, deduce the velocity v of the electron as it orbits around the nucleus. Express your answer in terms of e, m, r, and eo, the permittivity of free space. ► View Available Hint(s) v= [5] ΑΣΦ 1 πεπη e Submit Previous Answers ?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Quantum mechanics and hydrogen atom
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Inquiry into Physics
Inquiry into Physics
Physics
ISBN:
9781337515863
Author:
Ostdiek
Publisher:
Cengage
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Modern Physics
Modern Physics
Physics
ISBN:
9781111794378
Author:
Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College