Keep the track tilted at 14° with the horizontal. Put the friction block on the track surface at the top of the track. Let the friction block slide downwards. The length of the track is 65 cm. Starting from zero speed at the top of the track, what will be the speed of the friction block as it reaches the bottom? Write your answer in m/s. Use Hk = 0.12 and mass of the friction block 400 grams.

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter3: Motion In Two Dimensions
Section: Chapter Questions
Problem 42P: A landscape architect is planning an artificial waterfall in a city park. Water flowing at 1.70 m/s...
icon
Related questions
Question
Keep the track tilted at 14° with the horizontal. Put the friction block on the track surface at the top
of the track. Let the friction block slide downwards. The length of the track is 65 cm. Starting from
zero speed at the top of the track, what will be the speed of the friction block as it reaches the
bottom? Write your answer in m/s. Use u = 0.12 and mass of the friction block = 400 grams.
Transcribed Image Text:Keep the track tilted at 14° with the horizontal. Put the friction block on the track surface at the top of the track. Let the friction block slide downwards. The length of the track is 65 cm. Starting from zero speed at the top of the track, what will be the speed of the friction block as it reaches the bottom? Write your answer in m/s. Use u = 0.12 and mass of the friction block = 400 grams.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Power
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University