In Thomson’s model, an atom is a positively charged spherical material in which negatively charged electrons are embedded like chocolate chips on a ball of cookie dough. Consider such an atom, made up of a uniformly charged sphere with charge +e and radius R and a point charge with mass m and charge −e. a. Locate the position of electrostatic equilibrium for the electron inside the sphere. b. Assume further that the sphere has little or no resistance to the electron’s mo- tion. If the electron is displaced from equilibrium by a distance less than R, show that the resulting motion of the electron would be simple harmonic. c. If the electron was displaced from equilibrium by a distance greater than R, would the electron oscillate? Would its motion be simple harmonic?

icon
Related questions
Question

In Thomson’s model, an atom is a positively charged spherical material in which negatively charged electrons are embedded like chocolate chips on a ball of cookie dough. Consider such an atom, made up of a uniformly charged sphere with charge +e and radius R and a point charge with mass m and charge −e.

a. Locate the position of electrostatic equilibrium for the electron inside the sphere.

b. Assume further that the sphere has little or no resistance to the electron’s mo- tion. If the electron is displaced from equilibrium by a distance less than R, show that the resulting motion of the electron would be simple harmonic.

c. If the electron was displaced from equilibrium by a distance greater than R, would the electron oscillate? Would its motion be simple harmonic?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer