Air flows in a pipe under fully developed conditions with an average velocity of 1.25 m/s and a temperature of 24°C. The pipe's inner diameter is 4 cm, and its length is 4 m. The first half of the pipe is kept at a constant wall temperature of 100°C. The second half of the pipe is subjected to a constant heat flux of 200 W. The properties of air at 80°C are p = 0.9994 kg/m³, k = 0.02953 W/m-K, v= 2.097 x 10-5 m²/s, cp=1008 J/kg-K, and Pr = 0.7154. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter7: Forced Convection Inside Tubes And Ducts
Section: Chapter Questions
Problem 7.31P
icon
Related questions
Question
!
Required information
Air flows in a pipe under fully developed conditions with an average velocity of 1.25 m/s and a temperature of 24°C. The
pipe's inner diameter is 4 cm, and its length is 4 m. The first half of the pipe is kept at a constant wall temperature of 100°C.
The second half of the pipe is subjected to a constant heat flux of 200 W. The properties of air at 80°C are p = 0.9994
kg/m³, k = 0.02953 W/m-K, v=2.097 × 10-5 m²/s, cp=1008 J/kg-K, and Pr = 0.7154.
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
Air
1.25 m/s
2m
T, = 100°C
D = 4 cm
2 m
Q₁ = 200 W
Determine the wall temperature at the exit of the tube.
The wall temperature at the exit of the tube is 79.2988 °C.
Transcribed Image Text:! Required information Air flows in a pipe under fully developed conditions with an average velocity of 1.25 m/s and a temperature of 24°C. The pipe's inner diameter is 4 cm, and its length is 4 m. The first half of the pipe is kept at a constant wall temperature of 100°C. The second half of the pipe is subjected to a constant heat flux of 200 W. The properties of air at 80°C are p = 0.9994 kg/m³, k = 0.02953 W/m-K, v=2.097 × 10-5 m²/s, cp=1008 J/kg-K, and Pr = 0.7154. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Air 1.25 m/s 2m T, = 100°C D = 4 cm 2 m Q₁ = 200 W Determine the wall temperature at the exit of the tube. The wall temperature at the exit of the tube is 79.2988 °C.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning