A box of mass m = 20.0 kg is pulled up a ramp that is inclined at an angle 0 = 15.0° angle with respect to the horizontal. The coefficient of kinetic friction between the box and the ramp is 4 = 0.335, and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of a = 2.89 m/s?, calculate the tension Fr in the rope. Use g = 9.81 m/s? for the acceleration due to gravity.

University Physics Volume 1
18th Edition
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:William Moebs, Samuel J. Ling, Jeff Sanny
Chapter6: Applications Of Newton's Laws
Section: Chapter Questions
Problem 40P: A service elevator takes a load of garbage, mass 10.0 kg, from a floor of a skyscraper under...
icon
Related questions
Topic Video
Question
A box of mass m = 20.0 kg is pulled up a ramp that is
inclined at an angle 0 = 15.0° angle with respect to the
horizontal. The coefficient of kinetic friction between the
box and the ramp is µ = 0.335, and the rope pulling the
box is parallel to the ramp. If the box accelerates up the
ramp at a rate of a = 2.89 m/s?, calculate the tension Fr in
the rope. Use g = 9.81 m/s? for the acceleration due
to gravity.
Fr =
Transcribed Image Text:A box of mass m = 20.0 kg is pulled up a ramp that is inclined at an angle 0 = 15.0° angle with respect to the horizontal. The coefficient of kinetic friction between the box and the ramp is µ = 0.335, and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of a = 2.89 m/s?, calculate the tension Fr in the rope. Use g = 9.81 m/s? for the acceleration due to gravity. Fr =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Second law of motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University