6.84 ●● BIO All birds, independent of their size, must maintain a power output of 10-25 watts per kilogram of body mass in order to fly by flapping their wings. (a) The Andean giant hummingbird (Patagona gigas) has mass 70 g and flaps its wings 10 times per second while hovering. Estimate the amount of work done by such a hummingbird in each wingbeat. (b) A 70-kg athlete can main- tain a power output of 1.4 kW for no more than a few seconds; the steady power output of a typical athlete is only 500 W or so. Is it possible for a human-powered aircraft to fly for extended periods by flapping its wings? Explain.

College Physics
1st Edition
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:Paul Peter Urone, Roger Hinrichs
Chapter7: Work, Energy, And Energy Resources
Section: Chapter Questions
Problem 45PE: (a) What is the power output in watts and horsepower of a 70.0-kg sprinter who accelerates from rest...
icon
Related questions
Topic Video
Question
6.84
BIO All birds, independent of their size, must maintain a
power output of 10-25 watts per kilogram of body mass in order
to fly by flapping their wings. (a) The Andean giant hummingbird
(Patagona gigas) has mass 70 g and flaps its wings 10 times per
second while hovering. Estimate the amount of work done by such
a hummingbird in each wingbeat. (b) A 70-kg athlete can main-
tain a power output of 1.4 kW for no more than a few seconds; the
steady power output of a typical athlete is only 500 W or so. Is it
possible for a human-powered aircraft to fly for extended periods
by flapping its wings? Explain.
Transcribed Image Text:6.84 BIO All birds, independent of their size, must maintain a power output of 10-25 watts per kilogram of body mass in order to fly by flapping their wings. (a) The Andean giant hummingbird (Patagona gigas) has mass 70 g and flaps its wings 10 times per second while hovering. Estimate the amount of work done by such a hummingbird in each wingbeat. (b) A 70-kg athlete can main- tain a power output of 1.4 kW for no more than a few seconds; the steady power output of a typical athlete is only 500 W or so. Is it possible for a human-powered aircraft to fly for extended periods by flapping its wings? Explain.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Mechanical Work done
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics Volume 1
University Physics Volume 1
Physics
ISBN:
9781938168277
Author:
William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:
OpenStax - Rice University
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning