preview

Photosynthesis Lab

Decent Essays

During this lab, spectroscopy and chromatography was used to determine the various properties and characteristics of fast green solution, chloroplasts and an unknown solution. The spectrometer helped determine the absorbance levels of each substance which was used in this experiment. The levels which were determined were used to find the concentration curve of the concentrated solution of fast green solution and the concentration of the given unknown 215. The chlorophyll solution presented a varied distribution in the absorbance levels which would eventually help us determine what wavelengths are absorbed by chlorophyll. Chromatography was used to separate the components of the chlorophyll (spinach) solution which revealed …show more content…

The chloroplast contains the pigment chlorophyll which traps light energy (Yablonski, 16). Chloroplasts give leaves their green color by the pigments chlorophyll a, chlorophyll b, carotene and xanthophyll found in chlorophyll; the pigments chlorophyll a and b are separated from the other two pigments through chromatography to determine their absorbance levels (Griffith, 438). These pigments absorb and reflect certain wavelength of the visible spectrum which gives the leaf its green color; it absorbs wavelengths which are red and blue but reflect the yellow and green wavelengths of the spectrum making the leaf appear green in color to the human eye (Glover, et al, 505). Therefore the wavelengths which were reflected make up the colour of the leaves (Glover, et al, 505). This chromatographic separation was conducted to extract the different pigment in the chloroplast extract and to separate each of the different components (Quach, et al, 385). The wavelengths which are absorbed by each chlorophyll pigment are different and are based on the visible spectrum. Chlorophyll a obtains most of its energy from the violet blue, reddish orange and a low amount of the green-yellow-orange wavelengths regions of the visible spectrum compared to chlorophyll b which absorbs all the wavelengths not absorbed by chlorophyll a (Shibghatallah, et al, 3). From the results in the lab, it can be seen that the absorbance values determined fluctuate a lot, which resulted in a graph with more than one peak and downfalls. The highest peak determined by this experiment occurred at 660 nm for both chlorophylls. This can be confirmed by Schmid and his team who determined that the wavelength of chlorophyll a occurs between 660-680 nm whereas chlorophyll b absorbs wavelengths between 645-660 nm (Schmid, et al, 30). Thus, we can conclude by saying the spectroscopy helped us determine accurate

Get Access